Learning Outcomes based Curriculum Framework (LOCF) for Undergraduate Programme B.Sc. (Physics) 2019
Table of Contents

- Contents i
- Preamble ii-iv
- Learning Outcomes-based Curriculum Framework for Undergraduate Program in Physics
 1. Introduction 1
 2. Learning Outcomes based Curriculum Framework 2
 2.1 Nature and extent of UG program in Physics 2
 2.2 Aims of UG programs in Physics 3
 3. Graduate Attributes in Physics 3
 4. Qualification Descriptors for UG programs in Physics 4
 4.1 Qualification Descriptors for B.Sc Physics, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC) 5
 4.2 Qualification Descriptors for B.Sc (Honours) Physics 6
 5. Program Learning Outcomes in Physics 7
 5.1 Program Learning Outcomes in B.Sc Physics, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC) 7
 5.2 Program Learning Outcomes in B.Sc (Honours) Physics 9
 6. Structure of UG Courses in Physics 16
 6.1 Structure of courses in B.Sc Physics, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC) 18
 6.2 Structure of courses in B.Sc (Honours) Physics 18
 6.3 List of Physics courses 19
 6.4 Course Learning Outcomes (CLO), Skills to be Learned and Broad Contents of the Courses 23
 6.5 Detail Contents of various Courses, the suggested references and books 121
 7. Teaching Learning Process (TLP) 256
 8. Assessment and Evaluation (AE) 258
 9. Keywords 260
Preamble

The role of higher education is very important in securing the gainful employment and / or providing further access to higher education comparable to the best available in the world class institutions elsewhere. The improvement in the quality of higher education, therefore, deserves to be given highest priority to enable the young generation of students to acquire skill, training and knowledge in order to enhance their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes across all undergraduate programs in science, humanities, commerce and professional streams of higher education. One of the significant reforms in the undergraduate education is to introduce the Learning Outcomes-based Curriculum Framework (LOCF) which makes it student -centric, interactive and outcome-oriented with well defined aims, objectives and goals to achieve. The University Grants Commission (UGC) took the initiative of implementing the LOCF in the Colleges and the Universities of the country and Prof. D P Singh, the honourable chairman constituted a Core Expert Committee (CEC) which formulated the modalities for developing the LOCF in various subjects being taught in the undergraduate courses in sciences, humanities and commerce. The honourable chairman also constituted the Subject Expert Committees (SEC) in various subjects to prepare detailed guidelines for the LOCF in subjects concerned. The following Committee was constituted in Physics.

1. Prof. S.K. Singh (Former Vice Chancellor HNB Garhwal University) – Chairman
2. Prof. M.R. Anantharaman, Dept. of Physics, Cochin University of Science and Technology, Kochi – member
3. Prof. Buddhadeb Ghosh, Dept. of Physics, The University of Burdwan – member
4. Prof. C.N. Kumar, Dept. of Physics, Panjab University, Chandigarh – member

A meeting of the members of the CEC and all the Chairmen of SEC was held on 18.06.2018 which was chaired by Prof. D P Singh and attended by Prof R. Jain, Secretary UGC, Dr. R. Batra, Additional Secretary, UGC and Ms. M. Kaushik, The Education Officer, UGC, Prof. K. Ramachandran, a member of the CEC made a presentation on the essential features of the LOCF
which was formulated on the basis of a set of learning outcomes projected to be achieved for enhancing the employability and providing further opportunities for higher education and research. These Learning Outcomes (LO) determine the structure of the undergraduate programs to be offered by the Higher Educational Institutions (HEI) of our country. The key components of the planning and development of LOCF are given in terms of clear and unambiguous description of the Graduate Attributes, Qualification descriptors, Program Learning Outcomes (PLO) and Course Learning Outcomes (CLO) to be achieved at the end of the successful completion of each undergraduate program to be offered by the HEI.

In the undergraduate education in physics there are two undergraduate programs leading to the degree of B. Sc. with Physics and B. Sc (Honours) Physics. The Course Learning Outcomes (CLO) are defined separately for both programs.

In order to formulate the LOCF in physics, the first meeting of the Committee was held on 6th August 2018 at UGC, New Delhi. The Chairman briefed the members about the decisions taken in the meeting of all the chairmen of SEC with the members of CEC and officers of UGC held on 18.06.2018 and appraised them the task at hand and the modalities to prepare the report were elucidated. The topics were allocated to each member keeping in mind the member’s expertise and interests. It was proposed that the prepared notes shall be circulated among all members for feedback in the first instance.

Prof. A. C. Pandey, Director, IUAC, New Delhi was co-opted as member to the committee to utilize his expertise with his broad background in Physics, specialization in experimental physics and his experience as director of Institute of Interdisciplinary Studies, Allahabad.

The second meeting of the Committee was held on 24th September at UGC, New Delhi. Prof. Singh, Chairperson, briefed about the UGC meeting he attended along with Chairmen of all subject LOCF Committees, Prof. D P Singh, Chairman UGC, R. Subramaniam, Secretary MHRD and other officers of UGC and MHRD on 18.09.2018. The committee reviewed the progress made in the preparation of LOCF. It was resolved that all the inputs and the individual contributions be collated and discussed through the exchange of e-mails, telephonic conversions and other means of communications and resolved to finalize the draft report at the earliest possible date. Meanwhile UGC invited suggestions / comments from interested Institutions /
faculty to provide valuable feedback with reference to CBCS / LOCF program. About a dozen suggestions were received by various teachers and scientists working in many institutions in India which were made available to the committee and were given serious considerations in preparing the report.

The committee in its meetings deliberated on all the undergraduate programs being offered in physics which are categorized in two distinct types of programs.

1. i) B.Sc (Honours) Physics
2. ii) B.Sc with Physics
 iii) B.Sc with Physics, Chemistry, Mathematics i.e., B.Sc (PCM)
 iv) B.Sc with Physics, Electronics, Mathematics i.e., B.Sc (PEM)
 v) B.Sc with Physics, Mathematics, Computer Science i.e., B.Sc (PMC)

The LOCF have been formulated for the above courses as far as the Qualification Descriptors, Program Learning Outcomes (PLO) and the Course Learning Outcomes (CLO) are concerned.

Once the LOCF are formulated for the two undergraduate programs, their course structure and detailed contents of the courses regarding the various components like the classroom teaching (theory), laboratory (experiments), tutorials, and industrial / field visits and projects can be designed and planned to achieve the stated Learning Objectives (LO).

The LOCF also gives general guidelines for the teaching-learning process (TLP) corresponding to each component of theory, experiment, tutorials, projects and industrial / field visits to be followed in order to achieve the stated outcomes for each component. Finally some suggestions for using various methods in the assessment and evaluation of learning levels of students are also made.
1. Introduction

The learning outcomes-based curriculum framework (LOCF) for the undergraduate programs in Physics like B.Sc(Physics) and B.Sc.(Honours) in Physics is intended to provide a broad framework within which both the undergraduate programs in Physics help to create an academic base that responds to the need of the students to understand the basics of Physics and its ever-evolving nature of applications in explaining all the observed natural phenomenon as well as predicting the future applications to the new phenomenon with a global perspective. The curriculum framework is designed and formulated in order to acquire and maintain standards of achievement in terms of knowledge, understanding and skills in Physics and their applications to the natural phenomenon as well as the development of scientific attitudes and values appropriate for rational reasoning, critical thinking and developing skills for problem solving and initiating research which are competitive globally and are on par in excellence with the standard Higher Education Institutions (HEI) in the advanced countries of America, Asia and Europe. The multicultural fabric of our nation requires that the institutions involved in implementing this curriculum framework also work hard towards providing an environment to create, develop and inculcate rational, ethical and moral attitudes and values to help the creation of knowledge society needed for scientific advancement of our nation.

The learning outcome based curriculum framework in Physics should also allow for the flexibility and innovation in the program design of the UG education, and its syllabi development, teaching learning process and the assessment procedures of the learning outcomes. The process of learning is defined by the following steps which should form the basis of final assessment of the achievement at the end of the program.

- The accumulation of facts of nature and the ability to link the facts to observe and discover the laws of nature i.e. develop an understanding and knowledge of the basic Physics.
- The ability to use this knowledge to analyze new situations and learn skills and tools like mathematics, engineering and technology to find the solution, interpret the results and make predictions for the future developments.
- The ability to synthesize the acquired knowledge, understanding and experience for a better
and improved comprehension of the physical problems in nature and to create new skills and tools for their possible solutions.

The conceptualization and formulation of the learning outcomes for an undergraduate program in Physics is aimed to achieve (i) and (ii) above while the (iii) could be planned for the PG and research programs in Physics in the Higher Education Institutions in India.

2. Learning Outcomes based approach to Curriculum planning

2.1 Nature and extent of UG program in Physics:

The UG programs in Physics builds on the basic Physics taught at the +2 level in all the schools in the country. Ideally, the +2 senior secondary school education should aim and achieve a sound grounding in understanding the basic Physics with sufficient content of topics from modern Physics and contemporary areas of exciting developments in physical sciences to ignite the young minds. The curricula and syllabi should be framed and implemented in such a way that the basic connection between theory and experiment and its importance in understanding Physics should be apparent to the student. This is very critical in developing a scientific temperament and urge to innovate, create and discover in Physics. Unfortunately the condition of our school system in most parts of the country lacks the facilities to achieve the above goal and it is incumbent upon the college/university system to fill the gaps in the knowledge creation of our young minds created by the lack of infrastructural and academic resources of our school system and strengthen their understanding in all the subjects through the UG programs specially in Physics and other science subjects.

The undergraduate program in Physics is presently being offered though the courses designed for granting the following degrees by various colleges and universities in India. All the courses are of three year duration spread over six semesters after the higher secondary (+2) level Physics course.

i. B.Sc (Honours) Physics

ii. B.Sc with Physics

iii. B.Sc with Physics, Chemistry, Mathematics i.e., B.Sc (PCM)

iv. B.Sc with Physics, Electronics, Mathematics i.e., B.Sc (PEM)

v. B.Sc with Physics, Mathematics, Computer Science i.e., B.Sc (PMC)
2.2 Aims of UG program in Physics.

The aims and objectives of our UG educational programs in sciences in general and Physics in particular should be structured to

- create the facilities and environment in all the educational institutions to consolidate the knowledge acquired at +2 level and to motivate and inspire the students to create deep interest in Physics, to develop broad and balanced knowledge and understanding of physical concepts, principles and theories of Physics.
- learn, design and perform experiments in the labs to demonstrate the concepts, principles and theories learned in the classrooms.
- develop the ability to apply the knowledge acquired in the classroom and laboratories to specific problems in theoretical and experimental Physics.
- expose the student to the vast scope of Physics as a theoretical and experimental science with applications in solving most of the problems in nature spanning from 10^{-15} m to 10^{26}m in space and 10^{-10} eV to 10^{25}eV in energy dimensions.
- emphasize the discipline of Physics to be the most important branch of science for pursuing the interdisciplinary and multidisciplinary higher education and/or research in interdisciplinary and multidisciplinary areas.
- to emphasize the importance of Physics as the most important discipline for sustaining the existing industries and establishing new ones to create job opportunities at all levels of employment.

In view of opening the new windows in higher education and research and opening job opportunities at all levels from technicians to innovator scientists and engineers, two undergraduate programs are offered in our universities and other higher education institutions (HEI) at the entry level of our higher education system.

3. Graduate attributes in Physics

Some of the characteristic attributes of a graduate in Physics are

- **Disciplinary knowledge and skills:** Capable of demonstrating
 (i) good knowledge and understanding of major concepts, theoretical principles and
experimental findings in Physics and its different subfields like Astrophysics and Cosmology, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, Space science and other related fields of study, including broader interdisciplinary subfields like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology etc.

(ii) ability to use modern instrumentation and laboratory techniques to design and perform experiments is highly desirable in almost all the fields of Physics listed above in (i).

- **Skilled communicator:** Ability to transmit complex technical information relating all areas in Physics in a clear and concise manner in writing and oral ability to present complex and technical concepts in a simple language for better understanding.

- **Critical thinker and problem solver:** Ability to employ critical thinking and efficient problem solving skills in all the basic areas of Physics.

- **Sense of inquiry:** Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Physics, and planning, executing and reporting the results of a theoretical or experimental investigation.

- **Team player/worker:** Capable of working effectively in diverse teams in both classroom, laboratory, Physics workshop and in industry and field-based situations.

- **Skilled project manager:** Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and laboratory hygiene regulations and practices.

- **Digitally Efficient:** Capable of using computers for simulation studies in Physics and computation and appropriate software for numerical and statistical analysis of data, and employing modern e-library search tools like Inflibnet, various websites of the renowned Physics labs in countries like the USA, Europe, Japan etc. to locate, retrieve, and evaluate Physics information.

- **Ethical awareness / reasoning:** The graduate should be capable of demonstrating ability to think and analyze rationally with modern and scientific outlook and identify ethical issues related to one's work, avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights, and adopting objectives, unbiased and truthful actions in all aspects of work.
• **National and international perspective:** The graduates should be able to develop a national as well as international perspective for their career in the chosen field of the academic activities. They should prepare themselves during their most formative years for their appropriate role in contributing towards the national development and projecting our national priorities at the international level pertaining to their field of interest and future expertise.

• **Lifelong learners:** Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling in all areas of Physics.

4. Qualification descriptors for a UG programs in Physics

4.1 Qualification descriptors for a B.Sc General, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC)

The qualification descriptors for a B.Sc General, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC) program may include the following.

The graduates should be able to:

• Demonstrate

 (i) a fundamental/systematic or coherent understanding of the academic field of Physics, its different learning areas like Astrophysics, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, Space science and applications, and its linkages with related disciplinary areas/subjects like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology;

 (ii) procedural knowledge that creates different types of professionals related to different areas of study in Physics outlined above, including research and development, teaching and government and public service;

 (iii) skills in areas related to specialization area relating the subfields and current developments in the academic field of Physics.

• Use knowledge, understanding and skills required for identifying problems and issues relating to Physics, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources from various Physics laboratories of the world, and their application, analysis and evaluation using methodologies as appropriate to Physics for formulating new theories and concepts.
• Communicate the results of studies undertaken accurately in a range of different contexts using the main concepts, constructs and techniques of Physics. Develop communication abilities to present these results in technical as well as popular science meetings organized in various universities and other private organizations.

• Ability to meet one’s own learning needs, drawing on a range of current research and development work and professional materials, and interaction with other physicists around the world.

• Apply one’s knowledge of Physics and theoretical and laboratory skills to new/unfamiliar contexts to identify and analyse problems and issues and solve complex problems in Physics and related areas with well-defined solutions.

• Demonstrate Physics-related technological skills that are relevant to Physics-related job trades and employment opportunities.

4.2 Qualification descriptors for a B.Sc (Honours)

The qualification descriptors for a B.Sc(Honours) Physics Program may include the following.

The graduates should be able to:

• Demonstrate

(i) a systematic, extensive and coherent knowledge and understanding of the academic field of study as a whole and its applications, and links to related disciplinary areas/subjects of study; including a critical understanding of the established theories, principles and concepts, and of a number of advanced and emerging issues in the field of Physics;

(ii) procedural knowledge that creates different types of professionals related to the subject area of Physics, including research and development, teaching and government and public service;

(iii) skills in areas related to one’s specialization area and current developments in the academic field of Physics, including a critical understanding of the latest developments in the area of specialization, and an ability to use established techniques of analysis and enquiry within the area of specialization.

• Demonstrate comprehensive knowledge about materials, including current research, scholarly, and/or professional literature, relating to essential and advanced learning areas pertaining to various subfields in Physics, and techniques and skills required for identifying Physics
problems and issues in their area of specialization in Physics.

- Demonstrate skills in identifying information needs, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources from the Physics labs around the world, analysis and interpretation of data using methodologies as appropriate to the subject of Physics in the area of his specialization.
- Use knowledge, understanding and skills in Physics for critical assessment of a wide range of ideas and complex problems and issues relating to the various sub fields of Physics.
- Communicate the results of studies undertaken in the academic field of Physics accurately in a range of different contexts using the main concepts, constructs and techniques of the subject of Physics;
- Address one’s own learning needs relating to current and emerging areas of study relating to Physics, making use of research, development and professional materials as appropriate, including those related to new frontiers of knowledge in Physics.
- Apply one’s knowledge and understandings relating to Physics and skills to new/unfamiliar contexts and to identify and analyze problems and issues and seek solutions to real-life problems.
- Demonstrate subject-related and transferable skills that are relevant to some of the Physics-related jobs and employment opportunities.

5. Programme learning outcomes relating to B.Sc Courses in Physics

5.1 Program Learning Outcomes in B.Sc General, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC)

The student graduating with the Degree B.Sc General, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC) should be able to

- Acquire
 (i) a fundamental/systematic or coherent understanding of the academic field of Physics, its different learning areas and applications in basic Physics like Astrophysics, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, Space science, and its linkages with related disciplinary areas / subjects like Chemistry, Mathematics, Life sciences, Environmental
(ii) procedural knowledge that creates different types of professionals related to the disciplinary/subject area of Physics, including professionals engaged in research and development, teaching and government/public service;

(iii) skills in areas related to one’s specialization area within the disciplinary/subject area of Physics and current and emerging developments in the field of Physics.

- Demonstrate the ability to use skills in Physics and its related areas of technology for formulating and tackling Physics-related problems and identifying and applying appropriate physical principles and methodologies to solve a wide range of problems associated with Physics.

- Recognize the importance of mathematical modeling simulation and computing, and the role of approximation and mathematical approaches to describing the physical world.

- Plan and execute Physics-related experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate software such as programming languages and purpose-written packages, and report accurately the findings of the experiment/investigations while relating the conclusions/findings to relevant theories of Physics.

- Demonstrate relevant generic skills and global competencies such as (i) problem-solving skills that are required to solve different types of Physics-related problems with well-defined solutions, and tackle open-ended problems that belong to the disciplinary-area boundaries; (ii) investigative skills, including skills of independent investigation of Physics-related issues and problems; (iii) communication skills involving the ability to listen carefully, to read texts and research papers analytically and to present complex information in a concise manner to different groups/audiences of technical or popular nature; (iv) analytical skills involving paying attention to detail and ability to construct logical arguments using correct technical language related to Physics and ability to translate them with popular language when needed; (v) ICT skills; (vi) personal skills such as the ability to work both independently and in a group.

- Demonstrate professional behavior such as (i) being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behavior such as fabricating, falsifying or misrepresenting data or committing plagiarism; (ii) the ability to identify the potential ethical issues in work-related situations; (iii) appreciation of intellectual property, environmental and
sustainability issues; and (iv) promoting safe learning and working environment.

5.2 Program Learning Outcomes in B.Sc (Honours) Physics

The student graduating with the Degree B.Sc (Honours) Physics should be able to

- Acquire
 (i) a fundamental/systematic or coherent understanding of the academic field of Physics, its different learning areas and applications in basic Physics like Astrophysics, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, Space science, and its linkages with related disciplinary areas/subjects like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology;
 (ii) procedural knowledge that creates different types of professionals related to the disciplinary/subject area of Physics, including professionals engaged in research and development, teaching and government/public service;
 (iii) skills in areas related to one’s specialization area within the disciplinary/subject area of Physics and current and emerging developments in the field of Physics.

- Demonstrate the ability to use skills in Physics and its related areas of technology for formulating and tackling Physics-related problems and identifying and applying appropriate physical principles and methodologies to solve a wide range of problems associated with Physics.

- Recognize the importance of mathematical modeling simulation and computing, and the role of approximation and mathematical approaches to describing the physical world.

- Plan and execute Physics-related experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate software such as programming languages and purpose-written packages, and report accurately the findings of the experiment/investigations while relating the conclusions/findings to relevant theories of Physics.

- Demonstrate relevant generic skills and global competencies such as
 (i) problem-solving skills that are required to solve different types of Physics-related problems with well-defined solutions, and tackle open-ended problems that belong to the disciplinary-area boundaries;
(ii) investigative skills, including skills of independent investigation of Physics-related issues and problems;
(iii) communication skills involving the ability to listen carefully, to read texts and research papers analytically and to present complex information in a concise manner to different groups/audiences of technical or popular nature;
(iv) analytical skills involving paying attention to detail and ability to construct logical arguments using correct technical language related to Physics and ability to translate them with popular language when needed;
(v) ICT skills;
(vi) personal skills such as the ability to work both independently and in a group.

- Demonstrate professional behavior such as
 (i) being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behavior such as fabricating, falsifying or misrepresenting data or committing plagiarism;
 (ii) the ability to identify the potential ethical issues in work-related situations;
 (iii) appreciation of intellectual property, environmental and sustainability issues; and
 (iv) promoting safe learning and working environment.
Core Course for B.Sc (Hons.)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Fundamental understanding of the field</th>
<th>CC-I</th>
<th>CC-II</th>
<th>CC-III</th>
<th>CC-IV</th>
<th>CC-V</th>
<th>CC-VI</th>
<th>CC-VII</th>
<th>CC-VIII</th>
<th>CC-IX</th>
<th>CC-X</th>
<th>CC-XI</th>
<th>CC-XII</th>
<th>CC-XIII</th>
<th>CC-XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Application of basic Physics concepts</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Linkages with related disciplines</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Procedural knowledge for professional subjects</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Skills in related field of specialization</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Ability to use in Physics problem</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>Skills in Mathematical modeling</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>_</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Skills in performing analysis and interpretation of data</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Develop investigative Skills</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Skills in problem solving in Physics and related discipline</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Develop Technical Communication skills</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Developing analytical skills and popular communication</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>_</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>Developing ICT skills</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>Demonstrate Professional behaviour with respect to attribute like objectivity, ethical values, self reading, etc</td>
<td>X</td>
</tr>
</tbody>
</table>
Discipline Specific Electives (DSE) for B.Sc. (Hons.)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Fundamental understanding of the field</th>
<th>Application of basic Physics concepts</th>
<th>Linkages with related disciplines</th>
<th>Procedural knowledge for professional subjects</th>
<th>Skills in related field of specialization</th>
<th>Ability to use in Physics problem</th>
<th>Skills in Mathematical modeling</th>
<th>Skills in performing analysis and interpretation of data</th>
<th>Develop investigative Skills</th>
<th>Skills in problem solving in Physics and related discipline</th>
<th>Develop Technical Communication skills</th>
<th>Developing analytical skills and popular communication</th>
<th>Developing ICT skills</th>
<th>Demonstrate professional behaviour with respect to attribute like objectivity, ethical values, self reading, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>X</td>
</tr>
</tbody>
</table>
Skill Enhancement Course (SEC) for B.Sc. (Hons.) and B.Sc. Regular

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Fundamental understanding of the field</th>
<th>Application of basic Physics concepts</th>
<th>Linkages with related disciplines</th>
<th>Procedural knowledge for professional subjects</th>
<th>Skills in related field of specialization</th>
<th>Ability to use in Physics problem</th>
<th>Skills in Mathematical modeling</th>
<th>Skills in performing analysis and interpretation of data</th>
<th>Develop investigative Skills</th>
<th>Skills in problem solving in Physics and related discipline</th>
<th>Develop Technical Communication skills</th>
<th>Developing analytical skills and popular communication</th>
<th>Developing ICT skills</th>
<th>Demonstrate Professional behaviour with respect to attribute like objectivity, ethical values, self reading, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X</td>
<td>X X X X X X X</td>
<td>- - - X X X X X</td>
<td>- X X - X X X</td>
<td>- X - - - - - X</td>
<td>X X X X X X X X</td>
<td>X - - - - - - X</td>
<td>- X - - - - - - X</td>
<td>X X X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
</tbody>
</table>
Core Course & Generic Elective & Discipline Specific Electives for B.Sc Regular

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Fundamental understanding of the field</th>
<th>Application of basic Physics concepts</th>
<th>Linkages with related disciplines</th>
<th>Procedural knowledge for professional subjects</th>
<th>Skills in related field of specialization</th>
<th>Ability to use in Physics problem</th>
<th>Skills in Mathematica l modeling</th>
<th>Skills in performing analysis and interpretation of data</th>
<th>Develop investigative Skills</th>
<th>Skills in problem solving in Physics and related discipline</th>
<th>Develop Technical Communication skills</th>
<th>Developing analytical skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>_</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>_</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>_</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>skills and popular communication</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Developing ICT skills</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>X</td>
<td>_</td>
<td>X</td>
<td>_</td>
</tr>
<tr>
<td>14</td>
<td>Demonstrate professional behaviour with respect to attributes like objectivity, ethical values, self reading, etc</td>
<td>X</td>
</tr>
</tbody>
</table>
6. Structure of UG Courses in Physics

Distribution of different Courses in each semester with their credits for B.Sc (General) Physics with PCM, PMC & PEM

<table>
<thead>
<tr>
<th>Semester</th>
<th>Compulsory Core Courses (CC) each with 06 credit (Total no. of Papers 12)</th>
<th>Discipline Specific Elective (DSE)</th>
<th>Ability Enhancement Compulsory Courses (AECC)</th>
<th>Skill Enhancement Course (SEC)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem I</td>
<td>CC-1A CC-1B CC-1C</td>
<td>-</td>
<td>AECC-1</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Sem II</td>
<td>CC-2A CC-2B CC-2C</td>
<td>-</td>
<td>AECC-2</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Sem III</td>
<td>CC-3A CC-3B CC-3C</td>
<td>-</td>
<td>-</td>
<td>SEC-1A SEC-2B</td>
<td>22</td>
</tr>
<tr>
<td>Sem IV</td>
<td>CC-4A CC-4B CC-4C</td>
<td>-</td>
<td>-</td>
<td>SEC-2A SEC-2C</td>
<td>22</td>
</tr>
<tr>
<td>Sem V</td>
<td>-</td>
<td>DSE-1A DSE-1B DSE-1C</td>
<td>-</td>
<td>SEC-2B SEC-2C</td>
<td>22</td>
</tr>
<tr>
<td>Sem VI</td>
<td>-</td>
<td>DSE-2A DSE-2B DSE-2C</td>
<td>-</td>
<td>Any 02 SEC courses from discipline A, B & C</td>
<td>22</td>
</tr>
<tr>
<td>Total Credits</td>
<td>72</td>
<td>36</td>
<td>8</td>
<td>16</td>
<td>132</td>
</tr>
</tbody>
</table>
Distribution of different Courses in each semester with their credits for B.Sc. (Hons) Physics

<table>
<thead>
<tr>
<th>Semester</th>
<th>Core Courses (CC) each with 06 credit</th>
<th>Generic Elective (GE)</th>
<th>Skill Enhancement Course (SEC) Select any 4 out of 9 courses</th>
<th>Discipline Specific Elective (DSE) Select any four out of 16 courses</th>
<th>Ability Enhancement Compulsory Courses (AECC) Select any 2 out of 3 courses</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem I</td>
<td>CC-1 CC-2</td>
<td>GEC-1</td>
<td>SEC-1</td>
<td>-</td>
<td>AECC-1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem II</td>
<td>CC-3 CC-4</td>
<td>GEC-2</td>
<td>SEC-2</td>
<td>-</td>
<td>AECC-2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem III</td>
<td>CC-5 CC-6 CC-7</td>
<td>GEC-3</td>
<td></td>
<td>-</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem IV</td>
<td>CC-8 CC-9 CC-10</td>
<td>GEC-4</td>
<td></td>
<td>-</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem V</td>
<td>CC-11 CC-12</td>
<td>-</td>
<td>SEC-3</td>
<td>DSE-1 DSE-2</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem VI</td>
<td>CC-13 CC-14</td>
<td>-</td>
<td>SEC-4</td>
<td>DSE-3 DSE-4</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td>84</td>
<td>24</td>
<td>8</td>
<td>24</td>
<td>8</td>
<td>148</td>
</tr>
</tbody>
</table>
6.1 Structure of courses in B.Sc Physics, B.Sc (PCM), B.Sc (PEM), B.Sc (PMC)

The B.Sc. programs with Physics as one of the subjects consists of 132 credits based on the Choice Based Credit System (CBCS) approved by the UGC with 1 hour for each credit for theory/tutorials and 2 hours for each credit of laboratory work. Out of 132 credits, 108 credits are equally divided between Physics and two other subjects (36 credits each) based on the choice of the candidates while the additional 16 credits consist of Skilled Enhancement courses (SEC) and 8 credits of Ability Enhancement Compulsory Courses (AECC) equally divided (4 credits each) between disciplines of the Environmental sciences and Languages/communications. The 132 credit courses comprise of 72 credits of core courses (CC) and 8 credits of AECC which are mandatory as well as 36 credits of Discipline specific courses (DSE) and 16 credits of Skilled Enhancement courses (SEC) which are elective. A student can take more than 132 credits in total (but not more than 148 credits) to qualify for the grant of the B.Sc. Physics degree after completing them successfully as per rules and regulations of the HEI.

6.2 Structure of courses in B.Sc (Honours) Physics

The B.Sc. (Honours) Physics program is also based on the Choice Based Credit System (CBCS) approved by the UGC with a total of 148 credits. Out of 148 credits, 84 credits of core courses (CC) and 8 credits of Ability Enhancement Compulsory Courses (AECC) are mandatory while 24 credits of Discipline specific course and 24 credits of Generic Elective Courses (GEC) from Interdisciplinary disciplines as well as 16 credits of Skilled Enhancement courses are elective. A student can offer more than 148 credits (but not more than a total of 160 credits) to qualify for the grant of the B.Sc. (Honours) Physics degree after completing them successfully as per rules and regulations of the HEI.

A detailed list of Core Courses, Discipline Specific Courses (DSE) Generic Elective Courses (GEC), Skill Enhancement Courses (SEC) and Ability Enhancement Compulsory Courses (AECC) are given in Section 6.3
6.3 List of Physics Courses

6.3.1 Core Courses (CC)

All the courses have 6 credits with 4 credits of theory and 2 credits of practicals.

<table>
<thead>
<tr>
<th>B.Sc Physics / B.Sc (PCM)</th>
<th>B.Sc (Honours) Physics</th>
<th>B.Sc (PEM)</th>
<th>B.Sc (PMC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Mathematical Physics – I + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mechanics + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity and Magnetism + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity and Magnetism + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Physics + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Physics and Statistical Mechanics + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves and Optics + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves and Optics + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Physics – II + Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Digital Systems and Applications + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Mathematical Physics – III + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Elements of Modern Physics + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Analog Systems and Applications + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Quantum Mechanics and Applications + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Solid State Physics + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Electromagnetic Theory + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Statistical Mechanics + Lab</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
6.3.2 Discipline Specific Electives (DSE)

All the courses have 6 credits with 4 credits of theory and 2 credits of practicals or 5 credits of theory and 1 credit of Tutorials.

<table>
<thead>
<tr>
<th>B.Sc Physics / B.Sc (PCM)</th>
<th>B.Sc (Honours) Physics</th>
<th>B.Sc (PEM)</th>
<th>B.Sc (PMC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Experimental Techniques + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Physics of Devices and Communication + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Advanced Mathematical Physics I + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Advanced Mathematical Physics II + Tutorial</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Classical Dynamics + Tutorial</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Applied Dynamics + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Communication System + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nuclear and Particle Physics + Tutorials</td>
</tr>
<tr>
<td>-</td>
<td>Astronomy and Astrophysics + Tutorials</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Atmospheric Physics + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Nano Material and Applications + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Physics of the Earth + Tutorials</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Digital Signal Processing + Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medical Physics + Lab</td>
<td>Medical Physics + Lab</td>
<td>Medical Physics + Lab</td>
<td>Medical Physics + Lab</td>
</tr>
<tr>
<td>-</td>
<td>Biological Physics + Tutorials</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation</td>
<td>Dissertation</td>
<td>Dissertation</td>
</tr>
<tr>
<td>Course</td>
<td>B.Sc Physics / B.Sc (PCM)</td>
<td>B.Sc (Honours) Physics</td>
<td>B.Sc (PEM)</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Digital , Analog and Instrumentation + Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elements of Modern Physics + Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mathematical Physics + Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solid State Physics + Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quantum Mechanics + Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.3.3 Skill Enhancement Courses (SEC)

All courses have 4 credits with 2 credits of theory and 2 credits of Practicals / Tutorials / Projects and Field Work to be decided by HEI.

<table>
<thead>
<tr>
<th>Course</th>
<th>B.Sc Physics / B.Sc (PCM)</th>
<th>B.Sc (Honours) Physics</th>
<th>B.Sc (PEM)</th>
<th>B.Sc(PMC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Workshop Skills</td>
</tr>
<tr>
<td>Computational Physics Skills</td>
</tr>
<tr>
<td>Electrical Circuit and Network Skills</td>
</tr>
<tr>
<td>Basic Instrumentation Skills</td>
</tr>
<tr>
<td>Technical Drawing</td>
<td>Technical Drawing</td>
<td>Technical Drawing</td>
<td>Technical Drawing</td>
<td></td>
</tr>
<tr>
<td>Radiation Safety</td>
<td>Radiation Safety</td>
<td>Radiation Safety</td>
<td>Radiation Safety</td>
<td></td>
</tr>
<tr>
<td>Applied Optics</td>
<td>Applied Optics</td>
<td>Applied Optics</td>
<td>Applied Optics</td>
<td></td>
</tr>
</tbody>
</table>
6.3.4 Generic Electives (GE) (Minor Physics)

All the courses have 6 credits with 4 for other Departments/Disciplines credits of theory and 2 credits of practicals or 5 credits of theory and 1 credit of Tutorials.

<table>
<thead>
<tr>
<th>Generic Elective papers for other B.Sc (Honours) programs other than B.Sc (Honours) Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics + Lab</td>
</tr>
<tr>
<td>Electricity and Magnetism+ Lab</td>
</tr>
<tr>
<td>Thermal Physics and Statistical Mechanics + Lab</td>
</tr>
<tr>
<td>Waves and Optics + Lab</td>
</tr>
<tr>
<td>Embedded Systems –Introduction of Microcontroller + Lab</td>
</tr>
<tr>
<td>Nuclear and Particle Physics + Tutorials</td>
</tr>
<tr>
<td>Digital, Analog and Instrumentation + Lab</td>
</tr>
<tr>
<td>Elements of Modern Physics + Lab</td>
</tr>
<tr>
<td>Mathematical Physics + Lab</td>
</tr>
<tr>
<td>Solid State Physics + Lab</td>
</tr>
<tr>
<td>Quantum Mechanics + Lab</td>
</tr>
</tbody>
</table>

6.3.5 Ability Enhancement Compulsory Courses (AECC)

All the courses have 4 credits including Theory / Practicals / Projects

<table>
<thead>
<tr>
<th>AECC</th>
<th>B.Sc Physics / B.Sc (PCM) / B.Sc (PEM) / B.Sc(PMC) / B.Sc (Honours) Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English</td>
</tr>
<tr>
<td>2</td>
<td>MIL Communications</td>
</tr>
<tr>
<td>3</td>
<td>Environment Science</td>
</tr>
</tbody>
</table>
6.4 Course Learning Outcomes (CLO)
A. B.Sc. (Hons.) Physics Courses

6.4.1. Core Courses (CC)

C-I: MATHEMATICAL PHYSICS-I
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Revise the knowledge of calculus, vectors, vector calculus, probability and probability distributions. These basic mathematical structures are essential in solving problems in various branches of Physics as well as in engineering.
- Learn the curvilinear coordinates which have applications in problems with spherical and cylindrical symmetries.
- Learn the Dirac delta function its properties, which have applications in various branches of Physics, especially quantum mechanics.
- In the laboratory course, learn the fundamentals of the C and C++ programming languages and their applications in solving simple physical problems involving interpolations, differentiations, integrations, differential equations as well as finding the roots of equations.

(ii) Broad contents of the course:

- Calculus
- Vector Calculus
- Orthogonal Curvilinear Coordinates
- Dirac Delta function and its properties
- Introductory theory of probability

(iii) Skills to be learned

- Training in calculus will prepare the student to solve various mathematical problems.
- He / she shall develop an understanding of how to formulate a physics problem and solve given mathematical equation risen out of it.
The detail contents of this course and references and suggested books are given in Section 6.5.

C-II: MECHANICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

After going through the course, the student should be able to

- Understand laws of motion and their application to various dynamical situations, notion of inertial frames and concept of Galilean invariance. He / she will learn the concept of conservation of energy, momentum, angular momentum and apply them to basic problems.
- Understand the analogy between translational and rotational dynamics, and application of both motions simultaneously in analyzing rolling with slipping.
- Write the expression for the moment of inertia about the given axis of symmetry for different uniform mass distributions.
- Understand the phenomena of collisions and idea about center of mass and laboratory frames and their correlation.
- Understand the principles of elasticity through the study of Young Modulus and modulus of rigidity.
- Understand simple principles of fluid flow and the equations governing fluid dynamics.
- Apply Kepler’s law to describe the motion of planets and satellite in circular orbit, through the study of law of Gravitation.
- Explain the phenomena of simple harmonic motion and the properties of systems executing such motions.
- Describe how fictitious forces arise in a non-inertial frame, e.g., why a person sitting in a merry-go-round experiences an outward pull.
- Describe special relativistic effects and their effects on the mass and energy of a moving object.
- appreciate the nuances of Special Theory of Relativity (STR)
• In the laboratory course, the student shall perform experiments related to mechanics (compound pendulum), rotational dynamics (Flywheel), elastic properties (Young Modulus and Modulus of Rigidity) and fluid dynamics (verification of Stokes law, Searle method) etc.

(ii) **Broad contents of the course:**

• Fundamental of Dynamics
• Work and Energy
• Collisions
• Rotational Dynamics
• Elasticity
• Fluid Motion
• Gravitation and cathode force Motion
• Oscillation
• Non-inertial Systems
• Special Theory of Relativity

(iii) **Skills to be learned**

• Learn basics of the kinematics and dynamics linear and rotational motion.
• Learn the concepts of elastic in constant of solids and viscosity of fluids.
• Develop skills to understand and solve the equations of Newtonian Gravity and central force problem.
• Acquire basic knowledge of oscillation.
• Learn about inertial and non-inertial systems and essentials of special theory of relativity.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
C-III: ELECTRICITY AND MAGNETISM
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

After going through the course, the student should be able to

- Demonstrate Gauss law, Coulomb’s law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges.
- Explain and differentiate the vector (electric fields, Coulomb’s law) and scalar (electric potential, electric potential energy) formalisms of electrostatics.
- Apply Gauss’s law of electrostatics to solve a variety of problems.
- Articulate knowledge of electric current, resistance and capacitance in terms of electric field and electric potential.
- Demonstrate a working understanding of capacitors.
- Describe the magnetic field produced by magnetic dipoles and electric currents.
- Explain Faraday-Lenz and Maxwell laws to articulate the relationship between electric and magnetic fields.
- Understand the dielectric properties, magnetic properties of materials and the phenomena of electromagnetic induction.
- Describe how magnetism is produced and list examples where its effects are observed.
- Apply Kirchhoff’s rules to analyze AC circuits consisting of parallel and/or series combinations of voltage sources and resistors and to describe the graphical relationship of resistance, capacitor and inductor.
- Apply various network theorems such as Superposition, Thevenin, Norton, Reciprocity, Maximum Power Transfer, etc. and their applications in electronics, electrical circuit analysis, and electrical machines.
- In the laboratory course the student will get an opportunity to verify various laws in electricity and magnetism such as Lenz’s law, Faraday’s law and learn about the construction, working of various measuring instruments.
- Should be able to verify of various circuit laws, network theorems elaborated above, using simple electric circuits.
(ii) **Broad contents of the course**

- Electric Field and Electric Potential
- Conservative nature of Electrostatic Field
- Electrostatic energy of system of charges
- Dielectric Properties of Matter
- Magnetic Field
- Magnetic Properties of Matter
- Electromagnetic Induction
- Electrical Circuits
- Network Theorems
- Ballistic Galvanometer

(iii) **Skills to be learned**

- This course will help in understanding basic concepts of electricity and magnetism and their applications.
- Basic course in electrostatics will equips the student with required prerequisites to understand electrodynamics phenomena.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
(i) **Course learning outcome:**

This course will enable the student to

- Recognize and use a mathematical oscillator equation and wave equation, and derive these equations for certain systems.
- Apply basic knowledge of principles and theories about the behaviour of light and the physical environment to conduct experiments.
- Understand the principle of superposition of waves, so thus describe the formation of standing waves.
- Explain several phenomena we can observe in everyday life that can be explained as wave phenomena.
- Use the principles of wave motion and superposition to explain the Physics of polarisation, interference and diffraction.
- Understand the working of selected optical instruments like biprism, interferometer, diffraction grating, and holograms.
- In the laboratory course, student will gain hands-on experience of using various optical instruments and making finer measurements of wavelength of light using Newton Rings experiment, Fresnel Biprism etc. Resolving power of optical equipment can be learnt firsthand.
- The motion of coupled oscillators, study of Lissajous figures and behaviour of transverse, longitudinal waves can be learnt in this laboratory course.

(ii) **Broad contents of the course**

- Superposition of Two Collinear Harmonic Oscillations
- Superposition of Two Perpendicular Harmonic Oscillations
- Waves Motion – General
- Velocity of Waves
- Superposition of Two Harmonics Waves
• Wave Optics
• Interference
• Michelson’s Interferometer
• Diffraction
• Fraunhofer Diffraction
• Fresnel Diffraction
• Holography

(iii) Skills to be learned

• He / she shall develop an understanding of various aspects of harmonic oscillations and waves specially.

(i) Superposition of collinear and perpendicular harmonic oscillations
(ii) Various types of mechanical waves and their superposition.

• This course in basics of optics will enable the student to understand various optical phenomena, principles, workings and applications optical instruments.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.

C-V: MATHEMATICAL PHYSICS-II
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

• Learn the Fourier analysis of periodic functions and their applications in physical problems such as vibrating strings etc.

• Learn about the special functions, such as the Hermite polynomial, the Legendre polynomial, the Laguerre polynomial and Bessel functions and their differential equations and their applications in various physical problems such as in quantum mechanics which they will learn in future courses in detail.

• Learn the beta, gamma and the error functions and their applications in doing integrations.
• Know about the basic theory of errors, their analysis, estimation with examples of simple experiments in Physics.
• Acquire knowledge of methods to solve partial differential equations with the examples of important partial differential equations in Physics.
• In the laboratory course, learn the basics of the Scilab software, their utility, advantages and disadvantages.
• Apply the Scilab software in curve fittings, in solving system of linear equations, generating and plotting special functions such as Legendre polynomial and Bessel functions, solving first and second order ordinary and partial differential equations.

(ii) **Broad contents of the course:**

• Fourier Series
• Special Functions
• Special Integrals
• Theory of Errors
• Partial Differential Equation

(iii) **Skills to be learned**

• Training in mathematical tools like calculus, integration, series solution approach, special function will prepare the student to solve ODE, PDE’s which model physical phenomena.
• He / she shall develop an understanding of how to model a given physical phenomena such as pendulum motion, rocket motion, stretched string, etc., into set of ODE’s, PDE’s and solve them.
• These skills will help in understanding the behavior of the modeled system/s.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
C-VI: THERMAL PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Comprehend the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations.
- Learn about Maxwell’s thermodynamic relations.
- Learn the basic aspects of kinetic theory of gases, Maxwell-Boltzman distribution law, equitation of energies, mean free path of molecular collisions, viscosity, thermal conductivity, diffusion and Brownian motion.
- Learn about the real gas equations, Van der Waal equation of state, the Joule-Thompson effect.
- In the laboratory course, the students are expected to do some basic experiments in thermal Physics, viz., determinations of Stefan’s constant, coefficient of thermal conductivity, temperature coefficient of resistant, variation of thermo-emf of a thermocouple with temperature difference at its two junctions and calibration of a thermocouple.

(ii) Broad contents of the course:

- Zeroth and First Law of Thermodynamics
- Second Law of Thermodynamics
- Entropy
- Thermodynamic Potentials
- Maxwell’s Thermodynamic Relations
- Kinetic Theory of Gases:
 - Distribution of Velocities
 - Molecular Collisions
 - Real Gases
(iii) Skills to be learned

- This basic course in thermodynamics will enable the student to understand various thermo dynamical concepts, principles.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
C-VII: DIGITAL SYSTEMS AND APPLICATIONS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

As the successful completion of the course the student is expected to be conversant with the following.

- Basic working of an oscilloscope including its different components and to employ the same to study different wave forms and to measure voltage, current, frequency and phase.
- Secure first-hand idea of different components including both active and passive components to gain a insight into circuits using discrete components and also to learn about integrated circuits.
- About analog systems and digital systems and their differences, fundamental logic gates, combinational as well as sequential and number systems.
- Synthesis of Boolean functions, simplification and construction of digital circuits by employing Boolean algebra.
- Sequential systems by choosing FlipFlop as a building block- construct multivibrators, counters to provide a basic idea about memory including RAM,ROM and also about memory organization.
- Microprocessor and assembly language programming with special reference to IntelµP 8085.
- In the laboratory he is expected to construct both combinational circuits and sequential circuits by employing NAND as building blocks and demonstrate Adders, Subtractors, Shift Registers, and multivibrators using 555 ICs. He is also expected to use µP 8085 to demonstrate the same simple programme using assembly language and execute the programme using a µP kit.
(ii) **Broad contents of the course:**

- Digital storage oscilloscope.
- Active and passive filters
- Fundamental logic gates, combinational as well as sequential and number systems.
- Synthesis of Boolean functions, simplification and construction of digital circuits by employing Boolean algebra.
- Sequential systems by choosing Flip Flop as a building block- construct multivibrators, counters to provide a basic idea about memory including RAM, ROM and also about memory organization.
- Microprocessor and assembly language programming with special reference to Intel µP 8085.

(iii) **Skills to be learned**

- Acquire skills to understanding the functioning and operation of CRO to measure physical quantities in electrical and electronic circuits.
- Learn the basics of IC and digital circuits, and difference between analog and digital circuits. Various logic GATES and their realization using diodes and transmitters.
- Learn fundamental of Boolean algebra and their role in constructing digital circuits.
- Learn about combinatorial and sequential systems by building block circuits to construct multivibrators and counters.
- Understand basics of microprocessor and assembly language programming with examples.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
C-VIII: MATHEMATICAL PHYSICS-III
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Learn about the complex numbers and their properties, functions of complex numbers and their properties such as analyticity, poles and residues. The students are expected to learn the residue theorem and its applications in evaluating definite integrals.
- Learn about the Fourier transform, the inverse Fourier transform, their properties and their applications in physical problems. They are also expected to learn the Laplace transform, the inverse Laplace transforms, their properties and their applications in solving physical problems.
- In the laboratory course, the students should apply their C++/Scilab programming language to solve the following problems:

 (i) Solution first- and second- order ordinary differential equations with appropriate boundary conditions,

 (ii) Evaluation of the Gaussian integrals,

 (iii) Evaluation of a converging infinite series up to a desired accuracy,

 (iv) Evaluation of the Fourier coefficients of a given periodic function,

 (v) Plotting the Legendre polynomials and the Bessel functions of different orders and interpretations of the results,

 (vi) Least square fit of a given data to a graph,

(ii) Broad contents of the course:

- Complex Analysis
- Integrals Transforms
- Fourier Transforms
- Laplace Transform
(iii) Skills to be learned

- Knowledge of various mathematical tools like complex analysis, integral transform will equip the student with reference to solve a given ODE, PDE.
- These skills will help in understanding the behavior of the modeled system/s.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
C-IX: ELEMENTS OF MODERN PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) **Course learning outcome:**

- Know main aspects of the inadequacies of classical mechanics and understand historical development of quantum mechanics and ability to discuss and interpret experiments that reveal the dual nature of matter.
- Understand the theory of quantum measurements, wave packets and uncertainty principle.
- Understand the central concepts of quantum mechanics: wave functions, momentum and energy operator, the Schrodinger equation, time dependent and time independent cases, probability density and the normalization techniques, skill development on problem solving e.g. one dimensional rigid box, tunneling through potential barrier, step potential, rectangular barrier.
- Understanding the properties of nuclei like density, size, binding energy, nuclear forces and structure of atomic nucleus, liquid drop model and nuclear shell model and mass formula.
- Ability to calculate the decay rates and lifetime of radioactive decays like alpha, beta, gamma decay. Neutrinos and its properties and role in theory of beta decay.
- Understand fission and fusion well as nuclear processes to produce nuclear energy in nuclear reactor and stellar energy in stars.
- Understand various interactions of electromagnetic radiation with matter. Electron positron pair creation.
- Understand the spontaneous and stimulated emission of radiation, optical pumping and population inversion. Three level and four level lasers. Ruby laser and He-Ne laser in details. Basic lasing.
- In the laboratory course, the students will get opportunity to perform the following experiments
 - Measurement of Planck’s constant by more than one method.
 - Verification of the photoelectric effect and determination of the work Function of a metal.
- Determination of the charge of electron and e/m of electron.
- Determination of the ionization potential of atoms.
- Determine the wavelength of the emission lines in the spectrum of Hydrogen atom.
- Determine the absorption lines in the rotational spectrum of molecules.
- Determine the wavelength of Laser sources by single and Double slit experiments.
- Determine the wavelength and angular spread of He-Ne Laser using plane diffraction grating.
- Verification of the law of the Radioactive decay and determine the mean life time of a Radioactive Source, Study the absorption of the electrons from Beta decay. Study of the electron spectrum in Radioactive Beta decays of nuclei.
- Plan and Execute 2-3 group projects in the field of Atomic, Molecular and Nuclear Physics in collaboration with other institutions, if, possible where advanced facilities are available.

(ii) **Broad contents of the course:**

- One dimensional potential problem of bound states and scattering.
- Elementary introduction of nuclear physics with emphasis on

 (i) Nuclear Structure
 (ii) Nuclear Forces
 (iii) Nuclear Decays
 (iv) Fission and Fusion

- Introduction to Lasers.

(iii) **Skills to be learned**

- Comprehend the failure of classical physics and need for quantum physics.
- Grasp the basic foundation of various experiments establishing the quantum physics by doing the experiments in laboratory and interpreting them.
- Formulate the basic theoretical problems in one, two and three dimensional physics and solve them.
Learning to apply the basic skills developed in quantum physics to various problems in

(i) Nuclear Physics
(ii) Atomic Physics
(iii) Laser Physics

Learn to apply basic quantum physics to Ruby Laser, He-Ne Laser

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
(i) **Course learning outcome:**

At the end of the course the student is expected to assimilate the following and possesses basic knowledge of the following.

- N- and P- type semiconductors, mobility, drift velocity, fabrication of P-N junctions; forward and reverse biased junctions.
- Application of PN junction for different type of rectifiers and voltage regulators.
- NPN and PNP transistors and basic configurations namely common base, common emitter and common collector, and also about current and voltage gain.
- Biasing and equivalent circuits, coupled amplifiers and feedback in amplifiers and oscillators.
- Operational amplifiers and knowledge about different configurations namely inverting and non-inverting and applications of operational amplifiers in D to A and A to D conversions.
- To characterize various devices namely PN junction diodes, LEDs, Zener diode, solar cells, PNP and NPN transistors. Also construct amplifiers and oscillators using discrete components. Demonstrate inverting and non-inverting amplifiers using op-amps.

(ii) **Broad contents of the course**

- N- and P- type semiconductors,
- Fabrication of p-n junctions; forward and reverse biased junctions.
- Application of P N junction
- Rectifiers and voltage regulators.
- NPN and PNP transistors and
- Common base, common emitter and common collector
- Current and voltage gain.
- Biasing and equivalent circuits,
- Coupled amplifiers and feedback in amplifiers and oscillators.
• Operational amplifiers and its applications in D to A and A to D convertors

(iii) Skills to be learned

• Learn basic concepts of semiconductor diodes and their applications to rectifiers.
• Learn about junction transistor and their applications.
• Learn about different types of amplifiers including operational amplifier (Op-Amp) and their applications.
• Learn about sinusoidal oscillators of various types and A/D conversion.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
C-XI: QUANTUM MECHANICS AND APPLICATIONS
QUANTUM MECHANICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

This course will enable the student to get familiar with quantum mechanics formulation.

- After an exposition of inadequacies of classical mechanics in explaining microscopic phenomena, quantum theory formulation is introduced through Schrodinger equation.
- The interpretation of wave function of quantum particle and probabilistic nature of its location and subtler points of quantum phenomena are exposed to the student.
- Through understanding the behavior of quantum particle encountering a i) barrier, ii) potential, the student gets exposed to solving non-relativistic hydrogen atom, for its spectrum and eigenfunctions.
- Study of influence of electric and magnetic fields on atoms will help in understanding Stark effect and Zeeman Effect respectively.
- The experiments using Sci-lab will enable the student to appreciate nuances involved in the theory.
- This basic course will form a firm basis to understand quantum many body problems.
- In the laboratory course, with the exposure in computational programming in the computer lab, the student will be in a position to solve Schrodinger equation for ground state energy and wave functions of various simple quantum mechanical one-dimensional and three dimensional potentials.

(ii) Broad contents of the course:

- Time dependent Schrodinger equation
- Time independent Schrodinger equation
- General discussion of bound states in an arbitrary potential
- Quantum Theory of hydrogen-like atoms
- Atoms in Electric and Magnetic Fields
- Atoms in External Magnetic Fields
• Many electron atoms

(iii) **Skills to be learned**

• This course shall develop an understanding of how to model a given problem such as particle in a box, hydrogen atom, hydrogen atom in electric fields.
• Many electron atoms, L-S and J-J couplings.
• These skills will help in understanding the different Quantum Systems in atomic and nuclear physics.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
C-XII: SOLID STATE PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) **Course learning outcome:**

At the end of the course the student is expected to learn and assimilate the following.

- A brief idea about crystalline and amorphous substances, about lattice, unit cell, miller indices, reciprocal lattice, concept of Brillouin zones and diffraction of X-rays by crystalline materials.
- Knowledge of lattice vibrations, phonons and in depth of knowledge of Einstein and Debye theory of specific heat of solids.
- At knowledge of different types of magnetism from diamagnetism to ferromagnetism and hysteresis loops and energy loss.
- Secured an understanding about the dielectric and ferroelectric properties of materials.
- Understanding above the band theory of solids and must be able to differentiate insulators, conductors and semiconductors.
- Understand the basic idea about superconductors and their classifications.
- To carry out experiments based on the theory that they have learned to measure the magnetic susceptibility, dielectric constant, trace hysteresis loop. They will also employ to four probe methods to measure electrical conductivity and the hall set up to determine the hall coefficient of a semiconductor.

(ii) **Broad contents of the course:**

- Crystalline and amorphous substances, lattice, unit cell, miller indices, reciprocal lattice.
 Brillouin zones and diffraction of X-rays by crystalline materials.
- Lattice vibrations and phonons
- Different types of magnetism
- Dielectric and ferroelectric materials.
- Band theory of solids
- Insulators, conductors and semiconductors.
- Superconductors and their classifications.
(iii) Skills to be learned

- Learn basics of crystal structure and physics of lattice dynamics
- Learn the physics of different types of material like magnetic materials, dielectric materials, metals and their properties.
- Understand the physics of insulators, semiconductor and conductors with special emphasis on the elementary band theory of semiconductors.
- Comprehend the basic theory of superconductors. Type I and II superconductors, their properties and physical concept of BCS theory.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
(i) **Course learning outcome:**

- Achieve an understanding of the Maxwell’s equations, role of displacement current, gauge transformations, scalar and vector potentials, Coulomb and Lorentz gauge, boundary conditions at the interface between different media.
- Apply Maxwell’s equations to deduce wave equation, electromagnetic field energy, momentum and angular momentum density.
- Analyse the phenomena of wave propagation in the unbounded, bounded, vacuum, dielectric, guided and unguided media.
- Understand the laws of reflection and refraction and to calculate the reflection and transmission coefficients at plane interface in bounded media.
- Understand the linear, circular and elliptical polarisations of em waves. Production as well as detection of waves in laboratory.
- Understand propagation of em waves in anisotropic media, uni-axial and biaxial crystals phase retardation plates and their uses.
- Understand the concept of optical rotation, theories of optical rotation and their experimental rotation, calculation of angle rotation and specific rotation.
- Understand the features of planar optical wave guide and obtain the Electric field components, Eigen value equations, phase and group velocities in a dielectric wave guide.
- Understand the fundamentals of propagation of electromagnetic waves through optical fibres and calculate numerical apertures for step and graded indices and transmission losses.
- In the laboratory course, the student gets an opportunity to perform experiments Demonstrating principles of Interference, Refraction and diffraction of light using monochromatic sources of light. Demonstrate interference, Refraction and Diffraction using microwaves.
- Determine the refractive index of glass and liquid using total internal reflection of light.
- Verify the laws of Polarisation for plane polarised light.
• Determine Polarisation of light by Reflection and determine the polarization angle off or air-glass surface
• Determine the wavelength and velocity of Ultrasonic waves in liquids using diffraction.
• Study specific rotation of sugar using Polarimeter.
• Analyze experimentally the Elliptically Polarised light using Babinet's Compensator
• Study Experimentally the angle dependence of radiation for a simple dipole antenna
• Plan and Execute 2-3 group projects for designing new experiments based on the Syllabii.

(ii) Broad contents of the course:

• Review of Maxwell’s equations
• EM wave propagation in unbounded media of various types
• EM wave propagation in bounded media separated by two types of media
• Polarization of electromagnetic waves
• Wave guides
• Optical fibres

(iii) Skills to be learned

• Comprehend the role of Maxwell’s equation in unifying electricity and magnetism.
• Derive expression for

 (i) Energy density
 (ii) Momentum density
 (iii) Angular momentum density of the electromagnetic field

• Learn the implications of Gauge invariance in EM theory in solving the wave equations and develop the skills to actually solve the wave equation in various media like

 (i) Vacuum
 (ii) Dielectric medium
 (iii) Conducting medium
(iv) Dilute plasma

- Derive and understand the properties, EM wave passing through the interface between two media like

 (i) Reflection
 (ii) Refraction
 (iii) Transmission
 (iv) EM waves

- Learn the basic physics associated with the polarization of electromagnetic waves by doing various experiments for:

 (i) Plane polarized light
 (ii) Circularly polarized light
 (iii) Circularly polarized light

- Learn the application of EM theory to

 (i) Wave guides of various types
 (ii) Optical fibers in theory and experiment

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
C-XIV: STATISTICAL MECHANICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Understand the concepts of microstate, macrostate, ensemble, phase space, thermodynamic probability and partition function.
- Understand the combinatoric studies of particles with their distinguishably or indistinguishably nature and conditions which lead to the three different distribution laws e.g. Maxwell-Boltzmann distribution, Bose-Einstein distribution and Fermi-Dirac distribution laws of particles and their derivation.
- Comprehend and articulate the connection as well as dichotomy between classical statistical mechanics and quantum statistical mechanics.
- Learn to apply the classical statistical mechanics to derive the law of equipartition of energy and specific heat.
- Understand the Gibbs paradox, equipartition of energy and concept of negative temperature in two level system.
- Learn to calculate the macroscopic properties of degenerate photon gas using BE distribution law, understand Bose-Einstein condensation law and liquid Helium. Bose derivation of Plank's law
- Understand the concept of Fermi energy and Fermi level, calculate the macroscopic properties of completely and strongly degenerate Fermi gas, electronic contribution to specific heat of metals.
- Understand the application of F-D statistical distribution law to derive thermodynamic functions of a degenerate Fermi gas, electron gas in metals and their properties.
- Calculate electron degeneracy pressure and ability to understand the Chandrasekhar mass limit, stability of white dwarfs against gravitational collapse.
- In the laboratory course, the students gets an opportunity to verify Stefan's Law of radiation and determine Stefan's constant.
• Design and perform some experiments to determine Boltzmann' Constant.

• Use Computer simulations to study:

 i. Planck's Black Body radiation Law and compare with the Wien's Law and Raleigh - Jean's Law in appropriate temperature region.
 ii. Specific Heat of Solids by comparing, Dulong-Petit, Einstein's and Debye's Laws and study their temperature dependence

• Compare the following distributions as a function of temperature for various energies and the parameters of the distribution functions:

 i. Maxwell-Boltzmann distribution
 ii. Bose-Einstein distribution
 iii. Fermi-Dirac distribution

• Do 3-5 assignments given by the course instructor to apply the methods of Statistical mechanics to simple problems in Solid State Physics and Astrophysics

• Do the regular weekly assignments of at least 2-3 problems given by the course instructor.

(ii) **Broad contents of the course:**

• Classical Statistics
• Classical Theory of Radiation
• Quantum Theory of Radiation
• Bose-Einstein Statistics and its Applications
• Fermi-Dirac Statistics and its Applications.

(iii) **Skills to be learned**

• Learn the basic concepts and definition of physical quantities in classical statistics and classical distribution law.
• Learn the application of classical statistics to theory of radiation.
• Comprehend the failure of classical statistics and need for quantum statistics.
• Learn the application of quantum statistics to derive and understand.

2. Ferm-Dirac statistic and its applications to quantum systems.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.

6.4.2. Discipline Specific Elective Course (DSE)
(i) **Course learning outcome:**

At the end of the course the student should be conversant with the following.

- About accuracy and precision, different types of errors and statistical analysis of data.
- About Noise and signal, signal to noise ratio, different types of noises and their identification.
- Concept of electromagnetic interference and necessity of grounding.
- About transducers and basic concepts of instrumentation-Different types of transducers and sensors.
- Working of a digital multimeter.
- Vacuum systems including ultrahigh vacuum systems.
- Conduct Experiments using different transducers including LVDT and gain hands on experience and verify the theory.

(ii) **Broad contents of the course:**

- Accuracy and precision,
- Different types of errors and statistical analysis of data.
- Noise and signal, signal to noise ratio, different types of noises
- Electromagnetic interference and necessity of grounding.
- Transducers
- Different types of transducers and sensors.
- Digital multimeter.
- Vacuum systems including ultrahigh vacuum systems.

(iii) **Skills to be learned**

- Develop skills to analyse data, make approximation and perform error analysis using basic methods of statistics.
- Learn the working principle of transducers, their application and study of the efficiency.
• Develop understanding of analog and digital instruments and earn to use them in making physical measurements.
• Develop their understanding of signal, noise, and fluctuations in making physical measurements.
• Understanding of Impedances Bridges, Q meters as well as vacuum systems using various types of pumps and pressure gauges.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-II: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

At the successful completion of the course the student is expected to master the following.

- Embedded systems including its generic architecture, design and classifications, Embedded processors and microcontrollers.
- Organization of Intel microprocessor 8085, its architecture, pin diagram, timing diagram, instruction set and programming in assembly language.
- Organization of Intel 8051 microcontroller, its architecture, instruction set, programming and its memory organization, timing diagram.
- Input/output operations and manipulation for arithmetic and logical operations.
- Programming with and without interrupt service request.
- Interfacing parallel and serial ADC and DAC.
- Basics of embedded system development and product development with a brief introduction to Arduino.
- Student shall be able to design, fabricate, test and run the programs.

(ii) Broad contents of the course:

- Embedded Systems
- Intel microprocessor 8085.
- Intel 8051 microcontroller, architecture, instruction set, programming and its memory organization, timing diagram.
- Input/output operations and manipulation for arithmetic and logical operations.
- Programming with and without interrupt service request.
- Interfacing parallel and serial ADC and DAC.
- Embedded system development and product development
(iii) **Skills to be learned**

- Learn the architecture of embedded systems, their classification and application.
- Learn about the microprocessors and the organization of microprocessor based systems.
- Acquire knowledge of microcontrollers and their role in 1/0 port programming and their interface with peripherals.
- Learn about analog to digital and digital to analog convertors.
- Learn basics of Arduino and programming.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
(i) **Course learning outcome:**

At the successful completion of the course the student is expected to master the following.

- Metal oxide semiconductors, UJT, JFET, MOSFET, Charge coupled Devices and Tunnel Diode.
- Power Supply and the role of Capacitance and Inductance filters.
- Active and passive filters and various types of filters.
- Multivibrators using transistors, Phase locked loops, voltage controlled oscillators
- Basics of photolithography for IC fabrication, about masks and etching.
- Concepts of parallel and serial communication and knowledge of USB standards and GPIB.
- Basic idea of communication including different modulation techniques.

(ii) **Broad contents of the course:**

- Metal oxide semiconductors, UJT, JFET, MOSFET, Charge coupled Devices and Tunnel Diode.
- Power Supply and the role of Capacitance and Inductance filters.
- Active and passive filters and various types of filters.
- Multivibrators using transistors, Phase locked loops, voltage controlled oscillators
- Photolithography for IC fabrication, about masks and etching.
- Parallel and serial communications and USB standards and GPIB.
- Different modulation techniques.

(iii) **Skills to be learned**

- Acquire knowledge and skills to understand the of the following devices and instruments and practical knowledge to use them by doing experiments in laboratory.
(i) UJT
(ii) BJT
(iii) MOSFET
(iv) CCD
(v) Tunnel Diodes
(vi) Various types of Power Supplies
(vii) Various types of Filters
(viii) Multivibrators
(ix) Oscillators

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-IV: ADVANCED MATHEMATICAL PHYSICS-I
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Learn the basic properties of the linear vector space such as linear dependence and independence of vectors, change of basis, isomorphism and homomorphism, linear transformations and their representation by matrices.
- Learn the basic properties of matrices, different types of matrices viz., Hermitian, skew Hermitian, orthogonal and unitary matrices and their correspondence to physical quantities, e.g., operators in quantum mechanics. They should also learn how to find the eigenvalues and eigenvectors of matrices.
- Learn some basic properties tensors, their symmetric and antisymmetric nature, the Cartesian tensors, the general tensors, contravariant, covariant and mixed tensors and their transformation properties under coordinate transformations, physical examples of tensors such as moment of inertia tensor, energy momentum tensor, stress tensor, strain tensor etc.
- In the laboratory course, the students are expected to solve the following problems using the Scilab/C++ computer language:

 (i) Multiplication of two 3×3 matrices,
 (ii) Diagonalization of a matrix,
 (iii) Inverse of a matrix,
 (iv) Solutions of differential equations satisfied by different orthogonal polynomials and special function,
 (v) Determination of wave functions for stationary states as eigenfunctions of Hermitian differential operators and also the energy eigenvalues.

(ii) Broad contents of the course:

- Linear Vector Spaces
- Matrices
- Cartesian Tensors
• General Tensors

(iii) **Skills to be learned**

• In this course, the students should learn the skills of doing calculations with the linear vector space, matrices, their eigenvalues and eigenvectors, tensors, real and complex fields, linear and multilinear transformations in various physical situations, e.g., the Lorentz transformations etc.

• They also become efficient in doing calculations with the ‘calculus of variation’.

• In the laboratory course, the students should acquire the skills of applying the C++/SCILAB/MATLAB/MATHEMATICA software in solving standard physical problems.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
DSE-V: ADVANCED MATHEMATICAL PHYSICS-II
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

After the successful completion of the course, the students shall be able to

- Understand variational principle and apply it to calculate:

(i) Geodesics in two and three dimensions
(ii) Euler Lagrange Equation and apply it simple problems in one and two dimensions.

- Acquire basic concept of Hamiltonian, Hamilton’s principle and Hamiltonian equation of motion, Poisson and Lagrange brackets.

- Learn elementary group theory, i.e., definition and properties of groups, subgroups, Homomorphism, isomorphism, normal and conjugate groups, representation of groups, Reducible and Irreducible groups. Examples and exercises.

- Learn the theory of probability, Random variables and probability distributions, Expectation values and variance. Various examples of probability distributions used in physics. The principle of least squares.

(ii) Broad contents of the course:

- Calculus of variations and application to physical problems.

- Lagrangian and Hamiltonian equations of motion. Canonical variables. Legendre transformation, Poisson and Lagrange brackets and their properties.

- Elements of Group Theory.

(iii) Skills to be learned

- Ability to learn variational principle and do simple application to calculate geodesics in one, two and three dimensions.

- Ability to derive Euler equations of motion and apply it to simple pendulum and harmonic oscillator.
• Learn basics of group theory
• Learn the basics of the theory of probability and ability to calculate probability in simple problems.
• Derive various probability distributions and their application to different types of physical problems.
• Learn the principle of least squares and apply it to some cases of analyzing physical experiments.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-VI: CLASSICAL DYNAMICS
(Credits: 06, Theory-05, Tutorials -01)

(i) Course learning outcome:

- Revise the knowledge of the Newtonian, the Lagrangian and the Hamiltonian formulations of classical mechanics and their applications in appropriate physical problems.
- Learn about the small oscillation problems.
- Recapitulate and learn the special theory of relativity- postulates of the special theory of relativity, Lorentz transformations on space-time and other four vectors, four-vector notations, space-time invariant length, length contraction, time dilation, mass-energy relation, Doppler effect, light cone and its significance, problems involving energy-momentum conservations.
- Learn the basics of fluid dynamics, streamline and turbulent flow, Reynolds’s number, coefficient of viscosity and Poiseuille’s equation.
- Review the retarded potentials, potentials due to a moving charge, Lienard Wiechert potentials, electric and magnetic fields due to a moving charge, power radiated, Larmor’s formula and its relativistic generalization.

(ii) Broad contents of the course:

- Classical mechanics of point particles.
- Lagrangian and Hamiltonians of simple systems and derivations of equation of motion.
- Small amplitude oscillations
- Special theory of relativity
- Relativistic kinematics of one and two particle system.
- Basics of fluid dynamics

(iii) Skills to be learned

- Learn to define generalised coordinates, generalised velocities, generalised force and write Lagrangian for mechanical system in terms of generalised coordinates.
• Learn to derive Euler-Lagrange equation of motion and solve them for simple mechanical systems.
• Learn to write Hamiltonian for mechanical systems and derive and solve Hamilton’s equation of motion for simple mechanical systems.
• Formulate the problem of small amplitude oscillation and solve them to obtain normal modes of oscillation and their frequencies in simple mechanical systems.
• Develop the basic concepts of special theory of relativity and its applications to dynamical systems of particles.
• Develop the methods of relativistic kinematics of one and two particle system and its application to two particle decay and scattering.
• Develop and understand the basic concepts of fluid dynamics and its applications to simple problems in liquid flow.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-VII: APPLIED DYNAMICS
(Credits: 06, Theory-04, Practicals-02)

(i) **Course learning outcome:**

- Understand the idea of dynamical systems, phase space and trajectories in phase space. Simple examples from mechanical systems.
- Comprehend illustrated examples of dynamical systems from other disciplines like chemistry, biology and economics and apply to do the qualitative analysis of some simple examples.
- Learn to use software packages to generate and visualize various trajectories.
- Understand chaos and their sensitive dependence on initial conditions with examples from 2d- Billiards problem and other physical systems like electron motion in mesoscopic conductors etc. Understand fractals as self-similar structures by giving examples from Nature and develop mathematical models for simple fractal structures.
- Understand various forms of dynamics and different routes to chaos.
- Ability to define, characterize and detect various types of chaos and their dependence on initial condition using various order parameters.
- Understand basic Physics of fluids and its dynamics theoretically and experimentally and by computational simulations.
- Understand basic properties of fluids i.e. viscosity, thermal conductivity, mass diffusivity, equation of state.
- Understand the Physics of different types of fluid flow phenomena as well as fluid flow visualizations like streamlines, pathlines and streakline flows.
- The students should be able to do Simulation /Computer experiments/Lab experiments in the following topics:
 - Determination of the coupling Coefficients of Coupled pendulums and other coupled Oscillators
 - Determination of the couplings and damping coefficient of the Damped Coupled Oscillators
- Simulation of Simple Population Models, Experimental growth and Decay, Logistic growth, Species Competition, Predator-Prey Dynamics, Simple genetic circuits
- Solve rate equations numerically for some simple chemical reactions
- Simulation of Trajectories in some problems like Sinai Billiard, and Electron Motion in Mesoscopic conductors
- Simulation of Fractal Formation in Deterministic Fractals, Self Similar Fractals and Fractals in nature like Trees, Coastlines and Earthquakes
- Simulation of some Fluid Flow Models like Streamlines, Pathlines, and Streakline flows

(ii) **Broad contents of the course:**

- Introduction to dynamical systems in various branches of physics
- Introduction to chaos and fractals with examples.
- Elements of fluid dynamics.

(iii) **Skills to be learned**

- Develop the concept of phase space to define and formulate the dynamical systems.
- Identify the dynamical systems in Biology, Chemistry, Economics and computing and visualizing trajectories using computer software.
- Learn computer software skills to do qualitative analysis of dynamical systems.
- Learn to generate computer simulation of trajectories in phase space for simple systems demonstrating chaotic systems.
- Learn to use fractal dimensions to describe self similar structures with help of examples.
- Learn to simulate onset of chaos in simple dynamical systems in various conditions.
- Formulate the basic equations of computational fluid dynamics using elementary theory of fluid dynamics.
- Learn to solve the basic equations to explain the basic properties of fluids like thermal conductivity, viscosity, mass diffusivity etc.
- Demonstrate some simple examples of fluid flow as described in the syllabi.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
DSE-VIII: COMMUNICATION ELECTRONICS
(Credits: 06, Theory-04, Practicals-02)

(i) **Course learning outcome:**

At the end of the course the student is expected to have an idea/concept of the following,

- Electromagnetic spectra and different frequency bands.
- Modulation, different types of modulation and about super heterodyne receivers.
- Concept of sampling, sampling theorem and multiplexing.
- Digital transmission, encoding and decoding.
- Satellite communication including uplinking and downlinking.
- Mobile communication/telephony and concepts of cell telephony.
- 2G, 3G, 4G and 5G (Quantitative).
- Apply the theory that they have learned in the theory class to gain hands on experience in building modulation and demodulation circuits; Transmitters and Receivers for AM and FM. Also to construct TDM, PAM, PWM, PPM and ASK, PSK and FSK modulator and verify their results.

(ii) **Broad contents of the course:**

- Electromagnetic spectra and different frequency bands.
- Modulation, different types of modulation and super heterodyne receivers.
- Sampling, sampling theorem and multiplexing.
- Digital transmission, encoding and decoding.
- Satellite communication
- Mobile communication/telephony and concepts of cell telephony.
- 2G, 3G, 4G and 5G (Quantitative).

(iii) **Skills to be learned**

- Learn the skills to understand the basic concepts of communication.
- Learn the techniques of different types of modulation of electromagnetic signals like
(i) Amplitude Modulation
(ii) Frequency Modulation
(iii) Phase Modulation
(iv) Analog Pulse Modulation
(v) Digital Pulse Modulation

- Learn basics of satellite communication.
- Learn concepts and application of mobile telephony system.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-IX: NUCLEAR & PARTICLE PHYSICS
(Credits: 06, Theory-05, Tutorials-01)

(i) Course learning outcome:

- Learn the ground state properties of a nucleus – the constituents and their properties, mass number and atomic number, relation between the mass number and the radius and the mass number, average density, range of force, saturation property, stability curve, the concepts of packing fraction and binding energy, binding energy per nucleon vs. mass number graph, explanation of fusion and fission from the nature of the binding energy graph.

- Know about the nuclear models and their roles in explaining the ground state properties of the nucleus – (i) the liquid drop model, its justification so far as the nuclear properties are concerned, the semi-empirical mass formula, (ii) the shell model, evidence of shell structure, magic numbers, predictions of ground state spin and parity, theoretical deduction of the shell structure, consistency of the shell structure with the Pauli exclusion principles.

- Learn about the process of radioactivity, the radioactive decay law, the emission of alpha, beta and gamma rays, the properties of the constituents of these rays and the mechanisms of the emissions of these rays, outlines of Gamow’s theory of alpha decay and Pauli’s theory of beta decay with the neutrino hypothesis, the electron capture, the fine structure of alpha particle spectrum, the Geiger-Nuttall law, the radioactive series.

- Learn the basic aspects of nuclear reactions, the Q-value of such reaction and its derivation from conservation laws, The reaction cross-sections, the types of nuclear reactions, direct and compound nuclear reactions, Rutherford scattering by Coulomb potential.

- Learn some basic aspects of interaction of nuclear radiation with matter- interaction of gamma ray by photoelectric effect, Compton scattering and pair production, energy loss due to ionization, Cerenkov radiation.

- Learn about the detectors of nuclear radiations- the Geiger-Mueller counter, the scintillation counter, the photo-multiplier tube, the solid state and semiconductor detectors.
• The students are expected to learn about the principles and basic constructions of particle accelerators such as the Van-de-Graff generator, cyclotron, betatron and synchrotron. They should know about the accelerator facilities in India.

• Gain knowledge on the basic aspects of particle Physics – the fundamental interactions, elementary and composite particles, the classifications of particles: leptons, hadrons (baryons and mesons), quarks, gauge bosons. The students should know about the quantum numbers of particles: energy, linear momentum, angular momentum, isospin, electric charge, colour charge, strangeness, lepton numbers, baryon number and the conservation laws associated with them.

(ii) Broad contents of the course:

• General properties of nuclei
• Nuclear models
• Radioactive decays
• Nuclear reactions
• Interaction of nuclear radiation with matter
• Detectors for nuclear interaction
• Particle accelerators
• Elementary particles and their properties

(iii) Skills to be learned

• Skills to describe and explain the properties of nuclei and derive them from various models of nuclear structure.
• To understand, explain and derive the various theoretical formulation of nuclear disintegration like α decay, β decay and σ decays.
• Develop basic understanding of nuclear reactions and decays with help of theoretical formulate and laboratory experiments.
• Skills to develop basic understanding of the interaction of various nuclear radiation with matter in low and high energy …….
• Ability to understand, construct and operate simple detector systems for nuclear radiation and training to work with various types of nuclear accelerators.

• Develop basic knowledge of elementary particles as fundamental constituent of matter, their properties, conservation laws during their interactions with matter.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-X: ASTRONOMY AND ASTROPHYSICS
(Credits: 06, Theory-05, Tutorials-01)

(i) Course learning outcome:

- Ability to comprehend astronomical scales and understand basic concepts of positional astronomy like astronomical coordinate system and measurement of distances, time and temperature and radius of star.
- Understand basic parameters of stars like brightness, radiant flux, luminosity, magnitude, orbits, spectral classification. H-R diagram
- Understand astronomical techniques, various types of optical telescopes and telescope mountings. Various types of detectors and their use with telescopes.
- Acquire basic knowledge of galaxies and Milky Way. Morphology and classification of galaxies, intrinsic stages of galaxies, galactic halo, milky way, gas and dust in galaxy, spiral arm, rotation of galaxy and dark matter. Star clusters in Milky Way, galactic nucleus and its properties.
- Learn about the large scale structure and expanding universe cosmic distance ladder, distance measurements, cluster of galaxies, Hubble's law.

(ii) Broad contents of the course:

- Astronomical scalar and concepts of positional astronomy.
- Astronomical techniques for making measurements.
- Basics of solar and stellar physics.
- Milky Way and Galaxies – introductory knowledge.
- Large scale structures and expanding universe.
(iii) **Skills to be learned**

- Skills to learn and operate astronomical instruments to perform observations related to the positional astronomy measurement.
- Conceptualize skills to understand basic parameters for describing the properties of stars and making experimental measurements, their interpretation and role in understanding of astrophysical phenomenon. Study of solar and stellar spectra.
- Learn to describe solar parameters, solar atmosphere, origin of solar system, solar and extra-solar planets, planetary rings.
- Acquire basic knowledge of Milky Way and Galaxies, their properties and structure.
- Skills for understanding basics of large scale structures and expanding universe.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
DSE-XI: ATMOSPHERIC PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Good knowledge of Earth's atmosphere, its composition, effective temperature, Greenhouse effect. Hydrostatic equation and atmospheric thermodynamics. Local winds, clouds, fog, monsoon, cyclones, sea breeze and land breeze and thunderstorms etc.
- Essential knowledge of the instruments of meteorological observation, meteorological processes and systems.
- Understanding atmospheric dynamics, fundamental forces, conservation laws, rotating coordinate system and equations of motion. Circulation, vorticity, various types of circulations, atmospheric oscillations: biannual, annual and semi-annual oscillations.
- Understanding atmospheric waves. Surface water waves, acoustic waves, buoyancy waves, atmospheric gravity waves (AGW) and its propagation in non-homogeneous medium, Lamb and Rossy waves and their propagation in 3-dimension. Wave absorption and non linear effects.
- Skills to use atmospheric Radar and Lidar to study atmospheric phenomenon, basic knowledge of Radars and Lidars including Radar equation and signal processing. Develop numerical skills to do data analysis from Radar and Lidar.
- Knowledge of the classification and properties of aerosols, their concentrations and size distribution. Production and removal of aerosols. Radiative and health effects and observation techniques for aerosols.
- Through computer simulations in the laboratory course student will learn
 - Atmospheric wave using Dispersion relations
 - Kelvin waves, Rossby waves and Mountain waves
 - Offline and if possible online processing of RADAR data
i. VHF RADAR
ii. X-band RADAR
iii. UHF RADAR

- Offline and Online processing of LIDAR data
- Study of Radiosonde data and its interpretation in terms of the atmospheric parameters
- Interpretation of the satellite data using radio Occultation technique
- Time Series Analysis of Temperature using long term data and implications for climate change
- Take up 2-3 projects in collaboration with nearest center of IMD, if available, for simple analysis and interpretation of local atmospheric data.

(ii) **Broad contents of the course:**

- General features of Earth’s atmosphere.
- Atmospheric dynamics
- Atmospheric waves
- Atmospheric Radar and Lidar
- Atmospheric Aerosols.

(iii) **Skills to be learned**

- Develop skills to describe, understand and make measurements of various parameters to describe the physics of earth’s atmosphere.
- Learn skills to formulate, solve the theoretical equations describing the atmospheric dynamics and develop software to simulate and demonstrate in laboratory the various atmospheric phenomenon like.
- Atmospheric oscillations of various types.
- Atmospheric waves of various types.
- Learn the physics and equations for signal processing with help of

 (i) Radar
 (ii) Lidar
and performing data analysis to understand atmospheric phenomenon.

- Learn to make various types of theoretical and experimental analyses to explore the atmospheric aerosols and the effect of solar and cosmic radiation on aerosols.
- Develop a theoretical and experimental understanding of the absorption and scattering of solar radiation with matter.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
(i) **Course learning outcome:**

At the end of the course the student is expected to possess the concept the following.

- In the Nano systems and its implications in modifying the properties of materials at the nanoscale.
- Concept of Quantum confinement, 3D, 2D, 1D and 0D nanostructure with examples.
- Different synthesis techniques including top down and bottom up approaches.
- Optical properties of nanostructured materials, modification of band gap, excitonic confinement.
- Applications of nanostructured materials in making devices namely MEMS, NEMS and other heterostructures for solar cell and LEDs.
- The student will synthesize nanoparticles by different chemical routs and characterize them in the laboratory using the different techniques he has learnt in the theory. He will also carry out thin film preparation and prepare capacitors and evaluate its performance. He also expected to fabricate a PN diode and study its I-V characteristics.

(ii) **Broad contents of the course:**

- Nanoscale Systems
- Synthesis of Nanostructure Materials
- Characterization
- Optical Properties
- Electron Transport
- Applications

(iii) **Skills to be learned**

- Develop basic understanding of nanostructured materials.
• Learn the synthesis and characterization of nanostructured materials.
• Understanding the optical properties of nanostructured materials and electron transport phenomenon.
• Lean to understand the functioning of various analytical techniques using
 (i) X-ray Diffraction
 (ii) Atomic Force Microscopy
 (iii) Scanning Electron Microscopy
 (iv) Scanning Tunneling Microscopy
 (v) Transmission Electron Microscopy

• Application of nanoparticles in various fields like:
 (i) LED
 (ii) Solar Cells
 (iii) Single Electron Transform Devices
 (iv) Magnetic Data Storage
 (v) Micro-electrochemical Systems (MEMS)
 (vi) Nano- electrochemical Systems (NEMS)

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-XIII: PHYSICS OF EARTH
(Credits: 06, Theory -05, Tutorial -01)

(i) Course learning outcome:

This course will provide an exposure to student

- In the origin of Universe, place of Earth as a third rock revolving around Sun, its satellite Moon and in general evolution of present day Universe.
- Overview of the structure and evolution of the Earth as a dynamic planet within our solar system
- Application of physical principles of elasticity and elastic wave propagation to understand modern global seismology as a probe of the Earth's internal structure. The origin of magnetic field, Geodynamics of earthquakes and the description of seismic sources; a simple but fundamental theory of thermal convection; the distinctive rheological behaviour of the upper mantle and its top layer shall be understood.
- Climate and various roles played by water cycle, carbon cycle, nitrogen cycles in maintain steady state of earth shall be explored.
- This will enable the student to understand the contemporary dilemmas (climate change, biodiversity loss, population growth, etc.) disturbing the Earth
- In the tutorial section, through literature survey on the various aspects of health of Earth, project work / seminar presentation, he/she will be to appreciate need to ‘save’ Earth.

(ii) Broad contents of the course:

- The Earth and the Universe
- Structure
- Dynamical Processes
- Evolution
- Disturbing the Earth – Contemporary dilemmas

(iii) Skills to be learned
Knowledge of the place of Earth in this Universe and its formation, structure and its evolution shall enable the student to appreciate the reasons for keeping Earth ‘SAFE’

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-XIV: DIGITAL SIGNAL PROCESSING
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

At the end of the course the student is expected to have an idea/concept of the following,

- Fundamental classification of signals and systems based on the parameters which define them.
- Concept of Discrete-Time Fourier Transform and Z-transform on signals and its properties.
- Concept of Discrete Fourier Transform, different convolution techniques, filters and their classifications.
- Fluency in using Fast Fourier Transform.
- Understanding of Digital Filters and their classifications based on the response, design and algorithm.
- Signal generation, realization of systems and finding their transfer function, characterization using pole-zero plots and designing digital filters using Scilab simulations.

(ii) Broad contents of the course:

- Signals and systems based on the parameters
- Discrete-Time Fourier Transform and Z-transform on signals
- Convolution techniques, filters and their classifications.
- Fast Fourier Transforms.
- Digital Filters and their classifications based on the response, design and algorithm.

(iii) Skills to be learned

- Acquire basic understanding of Discrete-Time signals and systems.
- Learn the techniques of various types of fourier transforms …. in signal processing, i.e.,
(i) Discrete-Time Fourier Transforms
(ii) Discrete Fourier Transforms
(iii) Fast Fourier Transforms

- Learn various aspects of digital filters like
 (i) Various types of Digital Filters
 (ii) Realization of Digital Filters
 (iii) Finite Impulse Response Digital Filters
 (iv) Infinite Impulse Response Digital Filters

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSE-XV: MEDICAL PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

This course will enable the student to

- Focus on the application of Physics to clinical medicine.
- Gain a broad and fundamental understanding of Physics while developing particular expertise in medical applications.
- Learn about the human body, its anatomy, physiology and bioPhys ics, exploring its performance as a physical machine. Other topics include the Physics of the senses.
- He / She will study diagnostic and therapeutic applications like the ECG, radiation Physics, X-ray technology, ultrasound and magnetic resonance imaging.
- Gain knowledge with reference to working of various diagnostic tools, medical imaging techniques, how ionizing radiation interacts with matter, how it affects living organisms and how it is used as a therapeutic technique and radiation safety practices.
- Imparts functional knowledge regarding need for radiological protection and the sources of an approximate level of radiation exposure for treatment purposes.
- In the laboratory course, the student will be exposed to the workings of various medical devices. He / she gets familiarized with various detectors used in medical imaging, medical diagnostics. The hands-on experience will be very useful for the students when he / she enter the job market.

(ii) Broad contents of the course:

- Physics of the Body-I
- Physics of the Body –II
- Physics of Diagnostic and Therapeutic Systems-I
- Radiation Physics
- Medical Imaging Physics
- Radiation Oncology Physics
- Radiation and Radiation Protection
- Physics of Diagnostic and Therapeutic Systems-II

(iii) **Skills to be learned**

Essential physics of Medical Imaging, Radiological Physics, Therapeutic Systems and Radiation Therapy is acquired.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
(i) **Course learning outcome:**

This course will enable student to

- Acquire mastery of the fundamental principles and applications of various branches of Physics in understanding biological systems.
- Nuggets of thermodynamics and statistical mechanics, electricity and magnetism, will help in understating heat transfer in biomaterials.
- Relevance of chemistry principles and thermodynamics in understanding energy transfer mechanism and protein folding in biological systems.
- He /she will acquire necessary mathematical skills in differential equations, analysis, and linear algebra for simulation studies.
- A basic course in bioPhysics will provide proficiency in basic lab skills, including understanding and using modern instrumentation and computers.
- Get exposure to complexity of life at i) the level of Cell, ii) level of multi cellular organism and iii) at macroscopic system – ecosystem and biosphere
- Student gets exposure to models of evolution.

(ii) **Broad contents of the course:**

- Overview
- Molecules of Life
- The complexity of Life
- Evolution

(iii) **Skills to be learned**

- Basic concepts about biological physics and evolution are learned.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
6.4.3. Skill-based Elective Courses (SEC)

SEC-I: PHYSICS WORKSHOP SKILLS
(Credits: 02)

(i) Course learning outcome:
- After the successful completion of the course the student is expected to acquire skills/hands on experience / working knowledge on various machine tools, lathes, shapers, drilling machines, cutting tools, welding sets and also in different gear systems, pulleys etc. He/she will also acquire skills in the usage of multimeters, soldering iron, oscilloscopes, power supplies and relays.

(ii) Broad contents of the course:
- Introduction to make simple length, height, time, area, volume measurements.
- Mechanical skills needed to the workshop practice.
- Electrical and electronics skills related to the measurement of various electrical and electronics quantities.
- Introduction to Prime Movers.

(iii) Skills to be learned
- Learn to use mechanical tools to make simple measurement of length, height, time, area and volume.
- Obtain hand on experience of workshop practice by doing casting, foundry, machining, welding and learn to use various machine tool like lathe shaper, milling and drilling machines etc. and working with wooden and metal blocks.
- Learn to use various instruments for making electrical and electronics measurements using multimeter, oscilloscopes, power supply, electronic switches and relays.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
SEC-II: COMPUTATIONAL PHYSICS
(Credits: 02)

(i) Course learning outcome:

- Learn the importance of computers in solving problems in Physics.
- Learn how to plan for writing the algorithm for solving a problem by drawing the flowchart of simple problems like roots of quadratic equations etc.
- Have a working knowledge about the Linux system, for example, the necessary commands.
- Learn, write and run FORTRAN programs in the Linux system. In particular, they should attempt the following exercises:

 (i) Exercises on syntax on usage of FORTRAN.
 (ii) Usage of GUI windows, Linux commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.
 (iii) To print out all natural even/ odd numbers between given limits.
 (iv) To find maximum, minimum and range of a given set of numbers.

- The students should also learn “Scientific Word Processing”, particularly, how to use the LaTeX software in writing articles and papers which include mathematical equations and diagrams. Similarly, students should learn the basics of Gnuplot.
- To have hands-on experience on computational tools, students are expected to do the following exercises:

 (i) to compile a frequency distribution and evaluate mean, standard deviation etc,
 (ii) to evaluate sum of finite series and the area under a curve,
 (iii) to find the product of two matrices
 (iv) to find a set of prime numbers and Fibonacci series,
 (v) to write program to open a file and generate data for plotting using Gnuplot,
 (vi) plotting trajectory of a projectile projected horizontally,
 (vii) plotting trajectory of a projectile projected making an angle with the horizontal direction,
(viii) creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen, saving it as an eps file and as a pdf file,
(ix) to find the roots of a quadratic equation,
(x) numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization,
(xi) Simulate the motion of a particle in a central force field and plot the output for visualization.

(ii) **Broad contents of the course:**

- Introduction
- Scientific Programming
- Control Statements
- Scientific word processing: Introduction to LATEX
- Visualization

(iii) **Skills to be learned**

- The students should learn the skills for writing a flow chart and then writing the corresponding program for a specific problem using the C/C++/FORTRAN language.
- The student should also acquire the proficiency in effectively using the GUI Windows, the LINUX operating system and also in using the LaTeX software for writing a text file.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
SEC-III: ELECTRICAL CIRCUITS AND NETWORK SKILLS
(Credits: 02)

(i) Course learning outcome:

- After the completion of the course the student will acquire necessary skills/ hands on experience /working knowledge on multimeters, voltmeters, ammeters, electric circuit elements, dc power sources, ac/dc generators, inductors, capacitors, transformers, single phase and three phase motors, interfacing dc/ac motors to control and measure, relays and basics of electrical wiring.

(ii) Broad contents of the course:

- Basic principles of electricity, electrical circuits and electrical drawings.
- Physics of generators, transformers, electric motors.
- Solid state devices and their uses.
- Electrical wiring and measures for electrical protection.

(iii) Skills to be learned

- Skills to understand various types of DC and AC circuits and making electrical drawings with symbols for various systems.
- Skills to understand and operate generators, transformers and electric motors.
- Develop knowledge of solid state devices and their uses.
- Skills to do electrical wiring with assured electrical protection devices.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
SEC-IV: BASIC INSTRUMENTATION SKILLS
(Credits: 02)

(i) **Course learning outcome:**

After the successful completion of the course the student is expected to have the necessary working knowledge on accuracy, precision, resolution, range and errors/uncertainty in measurements. He/she will acquire hands on skills in the usage of oscilloscopes, multimeters, multivibrators, rectifiers, amplifiers, oscillators and high voltage probes. He also would have gained knowledge on the working and operations of LCR Bridge, generators, digital meters and counters.

(ii) **Broad contents of the course:**

- Basics of measurement
- Electronic voltmeters/multimeters
- Cathode ray oscilloscope
- Impedance Bridges and Q meters.
- Digital instruments, Digital multimeters

(iii) **Skills to be learned**

- Develop skills to use basic electrical instruments like multimeter, electronic voltmeter, cathode ray, and oscilloscope.
- Acquire efficiency in making signal generators and analysis of obtained signals.
- Learn to understand and use various types of digital instruments.
- Develop knowledge of making measurements with Impedance Bridges and Q meters.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
SEC-V: RENEWABLE ENERGY AND ENERGY HARVESTING
(Credits: 02)

(i) Course learning outcome:

- The students are expected to learn not only the theories of the renewable sources of energy, but also to have hands-on experiences on them wherever possible. Some of the renewable sources of energy which should be studied here are: (i) off-shore wind energy, (ii) tidal energy, (iii) solar energy, (iv) biogas energy and (v) hydroelectricity.

All these energy sources should be studied in detail.

- Learn about piezoelectricity, carbon-captured technologies like cells, batteries.
- The students should observe practical demonstrations of (i) training modules of solar energy, wind energy etc., (ii) Conversion of vibration into voltage using piezoelectric materials, (iv) conversion of thermal energy into voltage using thermoelectric modules.

(ii) Broad contents of the course:

- Fossil fuels and Alternate Sources of Energy
- Solar energy
- Wind Energy harvesting
- Ocean Energy
- Geothermal Energy
- Hydro Energy
- Piezoelectric Energy Harvesting
- Electromagnetic Energy Harvesting

(iii) Skills to be learned

- In this course student will study non-conventional energy sources and their practical applications.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
SEC-VI: TECHNICAL DRAWINGS
(Credits: 02)

(i) **Course learning outcome:**

This course learning will enable the student to be proficient in

- Understanding the concept of a sectional view, what is meant by a cutting plane, how to draw, and learn proper technique for drawing an aligned sections
- With above understanding, he will be exposed to the use of spatial visualization by constructing an orthographic multi view drawing
- He/she will be expert in drawing simple curves like ellipse, cycloid and spiral, Orthographic projections of points, lines and of solids like cylinders, cones, prisms and pyramids etc.
- Exposure to Computer Aided Design (CAD) and Auto CAD techniques will make the student technologically savvy.

(ii) **Broad contents of the course:**

- Introduction
- Projection
- Object Projection
- CAD Drawing

(iii) **Skills to be learned**

Basic understanding of how to read technical maps/draws. stereographic, 2D, 3D projections shall be acquired.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
SEC-VII: RADIATION SAFETY
(Credits: 02)

(i) Course learning outcome:

- Be aware and understand the hazards of radiation and the safety measures to guard against these hazards.
- Revise or learn the basic aspects of the atomic and nuclear Physics, specially the radiations that originate from the atom and the nucleus.
- Have a comprehensive knowledge about the nature of interaction of matter with radiations like gamma, beta, alpha rays, neutrons etc. and radiation shielding by appropriate materials.
- Know about the units of radiations and their safety limits, the devices to detect and measure radiation, such as the Geiger-Mueller counter and scintillation counter.
- The students are expected to learn radiation safety management, biological effects of ionizing radiation, operational limits and basics of radiation hazards evaluation and control, radiation protection standards, ‘International Commission on Radiological Protection’ (ICRP) its principles, justification, optimization, limitation, introduction of safety and risk management of radiation. nuclear waste and disposal management, brief idea about ‘Accelerator driven Sub-critical System’ (ADS) for waste management.
- Learn about the devices which apply radiations in medical sciences, such as MRI, PET.
- The students are expected to do the following experiments: (i) Study the background radiation levels using Radiation meter ,
- (ii) Characteristics of Geiger Muller (GM) Counter, getting the plateau curve and the operating voltage and the statistical distribution of beta or gamma ray emitted from a radioactive source,
- Determination of gamma ray linear and mass absorption coefficient of a given material, and drawing the mass absorption coefficient vs. energy curve for a given material with a number of gamma ray sources, (v)study of beta ray energy spectrum for a given source.
(ii) **Broad contents of the course:**

- Basic of Atomic and Nuclear Physics
- Interaction of Radiation with matter: Types of Radiation
- Radiation detection and monitoring devices: Radiation Quantities and Units
- Radiation safety management
- Application of nuclear techniques

(iii) **Skills to be learned**

- General concepts of nuclei, nuclear forces and atomic physics are studied.
- Basic knowledge about nuclear radiation types and radiation detectors.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
SEC-VIII: APPLIED OPTICS
(Credits: 02)

(i) **Course learning outcome:**

This course will enable the student to get

- Familiar with optical phenomena and technology.
- Qualitative understanding of basic lasing mechanism, types of Lasers, characteristics of Laser Light, types of Lasers, and its applications in developing LED, Holography.
- The idea of propagation of electromagnetic wave in a nonlinear media – Fibre optics as an example will enable the student to practice thinking in a logical process, which is essential in science.
- Experiments in this course will allow the students to discuss in peer groups to develop their cooperative skills and reinforce their understanding of concepts.

(ii) **Broad contents of the course:**

- Sources and Detectors
- Fourier Optics
- Holography
- Photonics: Fibre Optics

(iii) **Skills to be learned**

This course will help in understanding about the lasers and detectors, Holography, Optical fibre and their applications.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
SEC-IX: WEATHER FORECASTING
(Credits: 02)

(i) **Course learning outcome:**

- Acquire basic knowledge of the elements of the atmosphere, its composition at various heights, variation of pressure and temperature with height.
- To learn basic techniques to measure temperature and its relation with cyclones and anti-cyclones.
- Knowledge of global wind systems, jet streams, local thunderstorms, tropical cyclones, tornadoes and hurricanes.
- Knowledge of climate and its classification. Understanding various causes of climate change like global warming, air pollution, aerosols, ozone depletion, acid rain.
- Develop skills needed for weather forecasting, mathematical simulations, weather forecasting methods, types of weather forecasting, role of satellite observations in weather forecasting, weather maps etc. Uncertainties in predicting weather based on statistical analysis.
- In the laboratory course, students should be able to learn:
 - Principle of the working of a weather Station, Study of Synoptic charts and weather reports.
 - Processing and analysis of weather data.
 - Exercises in reading of Pressure charts, Surface charts, Wind charts and their analysis.
 - Develop ability to do weather forecasts using input data.
 - Assign Group Activity to observe and examine:
 - Sunniest and driest day of the week
 - Keep record of daily Temp, Pressure, rainfall and wind velocity
 - Prepare regular reports of the above observations and circulate it through the local media for the benefit of local community.
(ii) **Broad contents of the course:**

- Introduction to atmosphere
- Measuring the weather
- Weather systems
- Climate and climate change
- Basics of weather forecasting

(iii) **Skills to be learned**

- Learn the physical parameters to describe the basic structure of atmosphere and make their measurements.
- Understand the weather system and learn to measure the parameter describing the weather and its changes.
- Learn basic ideas about climate and physical factors affecting climate change.
- Learn basic physics of weather forecasting.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**

NOTE: THE CONTENTS AND THE STRUCTURE OF THE SKILL ENHANCEMENT COURSES (SEC) SHOULD BE MODIFIED TO MAKE IT 4 CREDITS WITH 2 CREDITS FOR THEORY AND 2 CREDITS FOR PRACTICALS / PROJECTS / FIELD WORKSHOP ETC.
6.4.4. Generic Elective Courses (GEC) for Minor Physics Course in the B.Sc.(Hons.) for other mains.

and

Core Courses (CC) and Discipline Specific Elective Courses (DSEC) for B.Sc. (General) Courses with PCM, PMC and PEM combinations

CC-I & GEC-I: MECHANICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

After going through the course, the student should be able to

- Understand the role of vectors and coordinate systems in Physics.
- Write the expression for the moment of inertia about the given axis of symmetry for different uniform mass distributions.
- Explain the conservation of energy, momentum, angular momentum and apply them to basic problems.
- Understand the analogy between translational and rotational dynamics, and application of both motions simultaneously in analyzing rolling with slipping.
- Apply Kepler’s law to describe the motion of planets and satellite in circular orbit.
- Explain the phenomena of simple harmonic motion and the properties of systems executing such motions.
- Describe how fictitious forces arise in a non-inertial frame, e.g., why a person sitting in a merry-go-round experiences an outward pull.
- Describe special relativistic effects and their effects on the mass and energy of a moving object.
- In the laboratory course, after acquiring knowledge of how to handle measuring instruments (like screw gauge, vernier callipers, Travelling microscope) student shall embark on verifying various principles learnt in theory. Measuring ‘g’ using Bar
Pendulum, Kater pendulum and measuring elastic constants of materials, viscous properties of liquids etc.

(ii) **Broad contents of the course**

- Vectors
- Ordinary Differential Equations
- Laws of Motion
- Momentum and Energy
- Rotational Motion
- Gravitation
- Oscillations
- Elasticity
- Special Theory of Relativity

(iii) **Skills to be learned**

- Learn basic mathematics like vectors and ordinary differential equation and to understand linear and rotational motion.
- Learn basics of Newtonian gravitation theory and central force problem.
- Learn basic ideas about mechanical oscillators.
- Learn elasticity and elastic constants of material and perform experiments to study them.
- Acquire basic knowledge of special theory of relativity.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
(i) **Course learning outcome:**

After going through the course, the student should be able to

- Demonstrate Coulomb’s law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges.
- Explain and differentiate the vector (electric fields, Coulomb’s law) and scalar (electric potential, electric potential energy) formalisms of electrostatics.
- Apply Gauss’s law of electrostatics to solve a variety of problems.
- Articulate knowledge of electric current, resistance and capacitance in terms of electric field and electric potential.
- Demonstrate a working understanding of capacitors.
- Describe the magnetic field produced by magnetic dipoles and electric currents.
- Explain Faraday-Lenz and Maxwell laws to articulate the relationship between electric and magnetic fields.
- Describe how magnetism is produced and list examples where its effects are observed.
- Apply Kirchhoff’s rules to analyze AC circuits consisting of parallel and/or series combinations of voltage sources and resistors and to describe the graphical relationship of resistance, capacitor and inductor.
- Apply various network theorems such as Superposition Theorem, Thevenin Theorem, Norton Theorem, Reciprocity Theorem, Maximum Power Transfer, etc. and their applications in electronics, electrical circuit analysis, and electrical machines.
- In the laboratory course the student will get an opportunity to verify all the above mentioned theorems elaborated above, using simple electric circuits.

(ii) **Broad contents of the course:**

- Vector Analysis
- Electrostatics
• Magnetism
• Electromagnetic Induction
• Maxwell’s Equation and EM Wave propagation.

(iii) **Skills to be learned**

• This course will help in understanding basic concepts of electricity and magnetism and their applications.
• Basic course in electrostatics will equips the student with required prerequisites to understand electrodynamics phenomena.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
CC-III & GEC-III: THERMAL PHYSICS AND STATISTICAL MECHANICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Learn the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations. They are also expected to learn Maxwell’s thermodynamic relations.
- Know the fundamentals of the kinetic theory of gases, Maxwell-Boltzman distribution law, equipartition of energies, mean free path of molecular collisions, viscosity, thermal conductivity, diffusion and Brownian motion.
- Have a knowledge of the real gas equations, Van der Waal equation of state, the Joule-Thompson effect.
- Learn about the black body radiations, Stefan-Boltzmann’s law, Rayleigh-Jean’s law and Planck’s law and their significances.
- Learn the quantum statistical distributions, viz., the Bose-Einstein statistics and the Fermi-Dirac statistics.

- In the laboratory, the students are expected to perform the following experiments:

 (i) Measurement of Planck’s constant using black body radiation,
 (ii) To determine Stefan’s Constant,
 (iii) To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton’s disc method,
 (iv) To determine the temperature co-efficient of resistance by Platinum resistance thermometer,
 (v) To study the variation of thermo emf across two junctions of a thermocouple with temperature,
 (vi) To determine the coefficient of linear expansion by optical lever method.
 (vii) To determine the pressure coefficient of air by constant volume method,
 (viii) To determine the coefficient of linear expansion by travelling microscope,
(ix) To determine the coefficient of thermal conductivity of a bad conductor by Searle’s method.

(ii) **Broad contents of the course:**

- Laws of Thermodynamics
- Thermodynamic Potentials
- Kinetic Theory of Gases
- Theory of Radiation
- Introduction to Statistical Mechanics

(iii) **Skills to be learned**

- In this course the students should skilled in doing calculations in thermodynamics and in statistical mechanics.
- They should also be proficient in doing calculations with the kinetic theory of ideal and real gases.
- In the laboratory course, the students should acquire the skills of doing basic experiments in thermal physics with the right theoretical explanations of results there from.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
CC-IV & GEC-IV: WAVES AND OPTICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

This course will enable the student to

- Recognize and use a mathematical oscillator equation and wave equation, and derive these equations for certain systems.
- Apply basic knowledge of principles and theories about the behavior of light and the physical environment to conduct experiments.
- Understand the principle of superposition of waves, so thus describe the formation of standing waves.
- Explain several phenomena we can observe in everyday life that can be explained as wave phenomena.
- Use the principles of wave motion and superposition to explain the Physics of polarisation, interference and diffraction.
- Understand the working of selected optical instruments like biprism, interferometer, diffraction grating, and holograms.
- In the laboratory course, student will gain hands-on experience of using various optical instruments and making finer measurements of wavelength of light using Newton Rings experiment, Fresnel Biprism etc. Resolving power of optical equipment can be learnt first hand.
- The motion of coupled oscillators, study of Lissajous figures and behavior of transverse, longitudinal waves can be learnt in this laboratory course.

(ii) Broad contents of the course:

- Superposition of Two Collinear Harmonic Oscillations
- Superposition of Two Perpendicular Harmonic Oscillations
- Waves Motion – General
- Velocity of Waves
• Superposition of Two Harmonics Waves
• Wave Optics
• Interference
• Michelson’s Interferometer
• Diffraction
• Fraunhofer Diffraction
• Fresnel Diffraction
• Polarization

(iii) **Skills to be learned**

• This course in basics of optics will enable the student to understand various optical phenomena, principles, workings and applications optical instruments
• He / she shall develop an understanding of Waves Motion and its properties.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
GEC-V & DSEC-I: DIGITAL, ANALOG AND INSTRUMENTATION
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

After the successful completion of the course the student is expected to master the following

- Difference between analog and digital circuits, Number systems, their interconversions, Basic logic gates and combinational circuits to construct half adders, full adders, subtractors, 4 bit binary Adder -Subtractor and synthesis of circuits using Boolean algebra.
- Working of P and N type semiconductors, P-N junctions, Forward and Reverse biased junctions, LEDs, photodiode and solar cells, p-n-p,n-p-n transistors, different characteristics of CB,CE and CC configurations, load line, gain and biasing for CE amplifiers and classification of amplifiers.
- Operational amplifiers and its characterization, circuits using Op-Amp for making Summing and subtracting circuits, differentiators and integrators
- Criterion for Oscillations, Oscillators and evaluation of frequency of oscillators.
- Oscilloscope (CRO) and applications and usage of oscilloscopes for measuring voltages, currents and study of waveforms, Different rectifiers and voltage regulation using capacitors, Zener diode, Timing IC 555 and to use IC 555 to construct Monostable and Astable multivibrators.
- At the successful completion of the laboratory course the student is expected to acquire hands on skills/ knowledge on the following:-

i. Measurement of voltage and frequency of a periodic waveform using CRO, construct all logic gates using NAND as a building block, synthesize digital circuits and simplify them using Boolean algebra, construct adders/subtractors and binary adders and Adder-Subtractors
ii. Design monostable/astable multivibrators using IC555, I-V characterization of PN, Zener diodes, design and build CE amplifiers, build Weinbridge oscillators and construct amplifying circuits using IC 741.

(ii) **Broad contents of the course:**

- Signals and systems based on the parameters
- Discrete-Time Fourier Transform and Z-transform on signals
- Convolution techniques, filters and their classifications.
- Fast Fourier Transforms.
- Digital Filters and their classifications based on the response, design and algorithm.

(iii) **Skills to be learned**

- Understand the digital and analyse circuits and difference between them. Various logic GATES and their realization using diodes and transistors.
- Conceptualization of Bolear Algebra and its use in constructing logic circuits by various methods and their applications.
- Learn the physics of semiconductor devices. Different types of semiconductors, their use in making transistors and amplifiers and study their characteristics.
- Learn different types of operational amplifiers and oscillators and use them in laboratory experiments to explain their functioning.
- Learn to understand and use various instruments like:

 (i) CRO
 (ii) Power Supply
 (iii) Half wave and full wave rectifiers
 (iv) Zener diodes and their applications
 (v) Multivibrators

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
(i) **Course learning outcome:**

- Know main aspects of the inadequacies of classical mechanics and understand historical development of quantum mechanics and ability to discuss and interpret experiments that reveal the dual nature of matter.
- Understand the theory of quantum measurements, wave packets and uncertainty principle.
- Understand the central concepts of quantum mechanics: wave functions, momentum and energy operator, the Schrodinger equation, time dependent and time independent cases, probability density and the normalization techniques, skill development on problem solving e.g. one dimensional rigid box, tunneling through potential barrier, step potential, rectangular barrier.
- Understanding the properties of nuclei like density, size, binding energy, nuclear forces and structure of atomic nucleus, liquid drop model and nuclear shell model and mass formula.
- Ability to calculate the decay rates and lifetime of radioactive decays like alpha, beta, gamma decay. Neutrinos and its properties and role in theory of beta decay.
- Understand fission and fusion well as nuclear processes to produce nuclear energy in nuclear reactor and stellar energy in stars.
- Understand various interactions of electromagnetic radiation with matter. Electron positron pair creation.
- In the laboratory course, the students will get opportunity to perform the following experiments
 - Measurement of Planck's constant by more than one method.
 - Verification of the photoelectric effect and determination of the work Function of a metal.
 - Determination of the charge of electron and e/m of electron.
 - Determination of the ionization potential of atoms.
 - Determine the wavelength of the emission lines in the spectrum of Hydrogen atom.
• Determine the absorption lines in the rotational spectrum of molecules.
• Verification of the law of the Radioactive decay and determine the mean life time of a Radioactive Source, Study the absorption of the electrons from Beta decay. Study of the electron spectrum in Radioactive Beta decays of nuclei.
• Plan and Execute 2-3 group projects in the field of Atomic, Molecular and Nuclear Physics in collaboration with other institutions, if, possible where advanced facilities are available.

(ii) Broad contents of the course:

• Failure of classical physics and need for quantum physics.
• Various experiments establishing quantum physics and their interpretation.
• Wave-particle duality, uncertainty relation and their implications.
• Schrodinger equation and its simple applications in one dimensional potential problems of bound states and scattering.
• Elementary introduction of Nuclear Physics with emphasis on
 (i) Nuclear Structure
 (ii) Nuclear Forces
 (iii) Nuclear Decays
 (iv) Fission and Fusion

(iii) Skills to be learned

• Comprehend the failure of classical physics and need for quantum physics.
• Grasp the basic foundation of various experiments establishing the quantum physics by doing the experiments in laboratory and interpreting them.
• Formulate the basic theoretical problems in one, two and three dimensional physics and solve them.
• Learning to apply the basic skills developed in quantum physics to various problems in
 (i) Nuclear Physics
 (ii) Atomic Physics

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
GEC-VII & DSEC-III: MATHEMATICAL PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

- Revise the knowledge of calculus, vectors, vector calculus. These basic mathematical structures are essential in solving problems in various branches of Physics as well as in engineering.
- Learn the Fourier analysis of periodic functions and their applications in physical problems such as vibrating strings etc.
- Learn about the special functions, such as the Hermite polynomial, the Legendre polynomial, the Laguerre polynomial and Bessel functions and their differential equations and their applications in various physical problems such as in quantum mechanics which they will learn in future courses in detail.
- Learn the beta, gamma and the error functions and their applications in doing integrations.
- Know about the basic theory of errors, their analysis, and estimation with examples of simple experiments in Physics.
- Acquire knowledge of methods to solve partial differential equations with the examples of important partial differential equations in Physics.
- Learn about the complex numbers and their properties, functions of complex numbers and their properties such as analyticity, poles and residues. The students are expected to learn the residue theorem and its applications in evaluating definite integrals.
- In the laboratory course, learn the fundamentals of the C and C++ programming languages and their applications in solving simple physical problems involving interpolations, differentiations, integrations, differential equations as well as finding the roots of equations.

(ii) Broad contents of the course

- Fourier Series
- Special Functions
• Special Integrals
• Partial Differential Equation
• Complex Analysis

(iii) Skills to be learned

• In this course, the students should acquire proficiency in doing calculations with vectors, beta, gamma and error functions, partial differential equations in rectangular, spherical and cylindrical coordinators, Fourier analysis of periodic functions, special functions, polynomials and their differential equations.
• Ability to learn mathematic of complex variables and solve simple problems with relative functions, complex integrals and their applications to physical problems.
• The students should also acquire the skills in writing programs in the C,C++ languages and doing calculations of physical interests with these languages.
• The students should also become proficient in computing integrations and in solving differential equations by various methods.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
GEC-VIII & DSEC-IV: SOLID STATE PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) **Course learning outcome:**

At the end of the course the student is expected to learn and assimilate the following.

- A brief idea about crystalline and amorphous substances, about lattice, unit cell, miller indices, reciprocal lattice, concept of Brillouin zones and diffraction of X-rays by crystalline materials.
- Knowledge of lattice vibrations, phonons and in depth of knowledge of Einstein and Debye theory of specific heat of solids.
- At knowledge of different types of magnetism from diamagnetism to ferromagnetism and hysteresis loops and energy loss.
- Secured an understanding about the dielectric and ferroelectric properties of materials.
- Understanding above the band theory of solids and must be able to differentiate insulators, conductors and semiconductors.
- Understand the basic idea about superconductors and their classifications.
- To carry out experiments based on the theory that they have learned to measure the magnetic susceptibility, dielectric constant, trace hysteresis loop. They will also employ to four probe methods to measure electrical conductivity and the hall set up to determine the hall coefficient of a semiconductor.

(ii) **Broad contents of the course:**

- Crystalline and amorphous substances, lattice, unit cell, miller indices, reciprocal lattice. Brillouin zones and diffraction of X-rays by crystalline materials.
- Lattice vibrations and phonons
- Different types of magnetism
- Dielectric and ferroelectric materials.
- Band theory of solids
- Insulators, conductors and semiconductors.
- Superconductors and their classifications.
(iii) Skills to be learned

- Learn basics of crystal structure and physics of lattice dynamics
- Learn the physics of different types of material like magnetic materials, dielectric materials, metals and their properties.
- Understand the physics of insulators, semiconductor and conductors with special emphasis on the elementary band theory of semiconductors.
- Comprehend the basic theory of superconductors. Type I and II superconductors, their properties and physical concept of BCS theory.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
GEC-IX & DSEC-V: QUANTUM MECHANICS AND APPLICATIONS

QUANTUM MECHANICS

(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

This course will enable the student to get familiar with quantum mechanics formulation.

- After an exposition of inadequacies of classical mechanics in explaining microscopic phenomena, quantum theory formulation is introduced through Schrodinger equation.
- The interpretation of wave function of quantum particle and probabilistic nature of its location and subtler points of quantum phenomena are exposed to the student.
- Through understanding the behavior of quantum particle encountering a i) barrier, ii) potential, the student gets exposed to solving non-relativistic hydrogen atom, for its spectrum and eigenfunctions.
- Study of influence of electric and magnetic fields on atoms will help in understanding Stark effect and Zeeman Effect respectively.
- The experiments using Sci-lab will enable the student to appreciate nuances involved in the theory.
- This basic course will form a firm basis to understand quantum many body problems.
- In the laboratory course, with the exposure in computational programming in the computer lab, the student will be in a position to solve Schrodinger equation for ground state energy and wave functions of various simple quantum mechanical one-dimensional and three dimensional potentials.

(ii) Broad contents of the course:

- Time dependent Schrodinger equation
- Time independent Schrodinger equation
- General discussion of bound states in an arbitrary potential
- Quantum Theory of hydrogen-like atoms
- Atoms in Electric and Magnetic Fields
- Atoms in External Magnetic Fields
• Many electron atoms

(iii) **Skills to be learned**

• This course shall develop an understanding of how to model a given problem such as hydrogen, particle in a box etc. atom etc using wave function, operators and solve them.
• These skills will help in understanding the different Quantum Systems.

(iv) **The detail contents of this course and references and suggested books are given in Section 6.5.**
GEC-X & DSEC-VI: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

At the successful completion of the course the student is expected to master the following.

- Embedded systems including its generic architecture, design and classifications, Embedded processors and microcontrollers.
- Organization of intel microprocessor 8085, its architecture, pin diagram, timing diagram, instruction set and programming in assembly language.
- Organization of Intel 8051 microcontroller, its architecture, instruction set, programming and its memory organization, timing diagram.
- Input/output operations and manipulation for arithmetic and logical operations.
- Programming with and without interrupt service request.
- Interfacing parallel and serial ADC and DAC.
- Basics of embedded system development and product development with a brief introduction to Arduino.
- Student shall be able to design, fabricate, test and run the programs.

(ii) Broad contents of the course:

- Embedded Systems
- Intel microprocessor 8085.
- Intel 8051 microcontroller, architecture, instruction set, programming and its memory organization, timing diagram.
- Input/output operations and manipulation for arithmetic and logical operations.
- Programming with and without interrupt service request.
- Interfacing parallel and serial ADC and DAC.
- Embedded system development and product development

(iii) Skills to be learned
• Learn the architecture of embedded systems, their classification and application.
• Learn about the microprocessors and the organization of microprocessor based systems.
• Acquire knowledge of microcontrollers and their role in 1/0 port programming and their interface with peripherals.
• Learn about analog to digital and digital to analog convertors.
• Learn basics of Arduino and programming.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
(i) **Course learning outcome:**

- Learn the ground state properties of a nucleus – the constituents and their properties, mass number and atomic number, relation between the mass number and the radius and the mass number, average density, range of force, saturation property, stability curve, the concepts of packing fraction and binding energy, binding energy per nucleon vs. mass number graph, explanation of fusion and fission from the nature of the binding energy graph.

- Know about the nuclear models and their roles in explaining the ground state properties of the nucleus –(i) the liquid drop model, its justification so far as the nuclear properties are concerned, the semi-empirical mass formula, (ii) the shell model, evidence of shell structure, magic numbers, predictions of ground state spin and parity, theoretical deduction of the shell structure, consistency of the shell structure with the Pauli exclusion principles.

- Learn about the process of radioactivity, the radioactive decay law, the emission of alpha, beta and gamma rays, the properties of the constituents of these rays and the mechanisms of the emissions of these rays, outlines of Gamow’s theory of alpha decay and Pauli’s theory of beta decay with the neutrino hypothesis, the electron capture, the fine structure of alpha particle spectrum, the Geiger-Nuttall law, the radioactive series.

- Learn the basic aspects of nuclear reactions, the Q-value of such reaction and its derivation from conservation laws, the reaction cross-sections, the types of nuclear reactions, direct and compound nuclear reactions, Rutherford scattering by Coulomb potential.

- Learn some basic aspects of interaction of nuclear radiation with matter- interaction of gamma ray by photoelectric effect, Compton scattering and pair production, energy loss due to ionization, Cerenkov radiation.
• Learn about the detectors of nuclear radiations- the Geiger-Mueller counter, the scintillation counter, the photo-multiplier tube, the solid state and semiconductor detectors.

• The students are expected to learn about the principles and basic constructions of particle accelerators such as the Van-de-Graff generator, cyclotron, betatron and synchrotron. They should know about the accelerator facilities in India.

• Gain knowledge on the basic aspects of particle Physics – the fundamental interactions, elementary and composite particles, the classifications of particles: leptons, hadrons (baryons and mesons), quarks, gauge bosons. The students should know about the quantum numbers of particles: energy, linear momentum, angular momentum, isospin, electric charge, colour charge, strangeness, lepton numbers, baryon number and the conservation laws associated with them.

(ii) Broad contents of the course:

• General properties of nuclei
• Nuclear models
• Radioactive decays
• Nuclear reactions
• Interaction of nuclear radiation with matter
• Detectors for nuclear interaction
• Particle accelerators
• Elementary particles and their properties

(iii) Skills to be learned

• Skills to describe and explain the properties of nuclei and derive them from various models of nuclear structure.

• To understand, explain and derive the various theoretical formulation of nuclear disintegration like α decay, β decay and σ decays.

• Develop basic understanding of nuclear reactions and decays with help of theoretical formulate and laboratory experiments.
• Skills to develop basic understanding of the interaction of various nuclear radiation with matter in low and high energy ……

• Ability to understand, construct and operate simple detector systems for nuclear radiation and training to work with various types of nuclear accelerators.

• Develop basic knowledge of elementary particles as fundamental constituent of matter, their properties, conservation laws during their interactions with matter.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.
DSEC-VIII: MEDICAL PHYSICS
(Credits: 06, Theory-04, Practicals-02)

(i) Course learning outcome:

This course will enable the student to

- Focus on the application of Physics to clinical medicine.
- Gain a broad and fundamental understanding of Physics while developing particular expertise in medical applications.
- Learn about the human body, its anatomy, physiology and biophysics, exploring its performance as a physical machine. Other topics include the Physics of the senses.
- He / She will study diagnostic and therapeutic applications like the ECG, radiation Physics, X-ray technology, ultrasound and magnetic resonance imaging.
- Gain knowledge with reference to working of various diagnostic tools, medical imaging techniques, how ionizing radiation interacts with matter, how it affects living organisms and how it is used as a therapeutic technique and radiation safety practices.
- Imparts functional knowledge regarding need for radiological protection and the sources of and approximate level of radiation exposure for treatment purposes.
- In the laboratory course, the student will be exposed to the workings of various medical devices. He / she gets familiarized with various detectors used in medical imaging, medical diagnostics. The hands-on experience will be very useful for the students when he / she enter the job market.

(ii) Broad contents of the course:

- Physics of the Body-I
- Physics of the Body –II
- Physics of Diagnostic and Therapeutic Systems-I
- Radiation Physics
- Medical Imaging Physics
- Radiation Oncology Physics
Radiation and Radiation Protection
Physics of Diagnostic and Therapeutic Systems-II

(iii) Skills to be learned

Essential physics of Medical Imaging, Radiological Physics, Therapeutic Systems and Radiation Therapy is acquired.

(iv) The detail contents of this course and references and suggested books are given in Section 6.5.

6.4.5. Ability Enhancement Compulsory Courses (AECC)

- AECC-1 English
- AECC-II MIL Communications
- AECC-III Environment Science

The learning outcomes, broad contents, skills to be learned and detail contents of the course would be designed by the concerned departments.

6.5. Detail Contents of various Courses, the suggested references and books:

THE DEPARTMENT / UNIVERSITY CAN CHANGE / MODIFY THE COURSE CONTENT TO THE EXTENT OF 20% ACCORDING TO THE EXPERTISE AVAILABLE IN THE INSTITUTION AFTER FOLLOWING PROPER PROCEDURES DESCRIBED IN THE STATUTES AND ORDINANCES.

6.5.1. Compulsory Courses (C) and Discipline Specific Elective Courses (DSE) for B.Sc. (Hons.) Physics.

CORE COURSE (HONOURS IN PHYSICS)
Semester I
PHYSICS-C I: MATHEMATICAL PHYSICS-I
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
The emphasis of course is on applications in solving problems of interest to physicists.
The students are to be examined entirely on the basis of problems, seen and unseen.

Calculus:
Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions, Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only). (2 Lectures)

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers. (6 Lectures)

Vector Calculus:

Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector
fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs).

Orthogonal Curvilinear Coordinates:

Introduction to probability:
Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing.

Dirac Delta function and its properties:

Reference Books:
- An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning
- Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- Mathematical Physics, Goswami, 1st edition, Cengage Learning
PHYSICS LAB- C I LAB:
60 Lectures

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- The course will consist of lectures (both theory and practical) in the Lab
- Evaluation done not on the programming but on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- Students can use any one operating system Linux or Microsoft Windows

<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Overview</td>
<td>Computer architecture and organization, memory and I/O devices</td>
</tr>
<tr>
<td>Basics of scientific computing</td>
<td>Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence and Repetition, single</td>
</tr>
<tr>
<td></td>
<td>and double precision arithmetic, underflow & overflow, emphasize the importance of making equations</td>
</tr>
<tr>
<td></td>
<td>of dimensionless variables, Iterative methods</td>
</tr>
<tr>
<td>Errors and error Analysis</td>
<td>Truncation and round off errors, Absolute and relative errors, Floating point computations.</td>
</tr>
<tr>
<td>Programs:</td>
<td>Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search</td>
</tr>
<tr>
<td>Random number generation</td>
<td>Area of circle, area of square, volume of sphere, value of pi (π)</td>
</tr>
<tr>
<td>Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods</td>
<td>Solution of linear and quadratic equation, solving $\alpha = \tan \alpha$; $l = l_0 \left(\frac{\sin \alpha}{\alpha}\right)^2$ in optics</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation</td>
<td>Evaluation of trigonometric functions e.g. $\sin \theta$, $\cos \theta$, $\tan \theta$, etc.</td>
</tr>
<tr>
<td>Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method</td>
<td>Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop</td>
</tr>
<tr>
<td>Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, modified Euler and Runge-Kutta (RK) second and fourth order methods</td>
<td>First order differential equation • Radioactive decay • Current in RC, LC circuits with DC source • Newton’s law of cooling • Classical equations of motion Attempt following problems using RK 4 order method: • Solve the coupled differential equations $\frac{dx}{dt} = y + x - \frac{x^3}{3}$; $\frac{dy}{dx} = -x$ for four initial conditions $x(0) = 0$, $y(0) = -1$, -2, -3, -4. Plot x vs y for each of the four initial conditions on the same screen for $0 \leq t \leq 15$</td>
</tr>
<tr>
<td>The differential equation describing the motion of a pendulum is $\frac{d^2 \theta}{dt^2} = -\sin(\theta)$. The pendulum is released from rest at an angular displacement α, i.e. $\theta(0) = \alpha$ and $\theta'(0) = 0$. Solve the equation for $\alpha = 0.1$, 0.5 and 1.0 and plot θ as a function of time in the range $0 \leq t \leq 8\pi$. Also plot the analytic solution valid for small $\theta \left(\sin(\theta)\right) = \theta$</td>
<td></td>
</tr>
</tbody>
</table>

Referred Books:
- An Introduction to Computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press.
PHYSICS-C II: MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

(6 Lectures)

(4 Lectures)

Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames.

(3 Lectures)

(12 Lectures)

Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire.

(3 Lectures)

(2 Lectures)

(3 Lectures)

Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler’s Laws. Satellite in

Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.

Reference Books:
- Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.

Additional Books for Reference
- Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000
- University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
PHYSICS LAB-C II LAB

60 Lectures

1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.

2. To study the random error in observations.

3. To determine the height of a building using a Sextant.

4. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity.

5. To determine the Moment of Inertia of a Flywheel.

6. To determine g and velocity for a freely falling body using Digital Timing Technique.

8. To determine the Young's Modulus of a Wire by Optical Lever Method.

9. To determine the Modulus of Rigidity of a Wire by Maxwell’s needle.

10. To determine the elastic Constants of a wire by Searle’s method.

11. To determine the value of g using Bar Pendulum.

12. To determine the value of g using Kater’s Pendulum.

Reference Books:

- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal
- Engineering Practical Physics, S.Panigrahi & B.Mallick,2015, Cengage Learning India Pvt. Ltd.
Semester II

PHYSICS-C III: ELECTRICITY AND MAGNETISM
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Electric Field and Electric Potential
Electric field: Electric field lines. Electric flux. Gauss’ Law with applications to charged distributions with spherical, cylindrical and planar symmetry. (6 Lectures)

Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector \(\mathbf{D} \). Relations between \(\mathbf{E} \), \(\mathbf{P} \) and \(\mathbf{D} \). Gauss’ Law in dielectrics. (8 Lectures)

Magnetic Field: Magnetic force between current elements and definition of Magnetic Field \(\mathbf{B} \). Biot-Savart’s Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere’s Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of \(\mathbf{B} \): curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. (9 Lectures)
Magnetic Properties of Matter: Magnetization vector (\(\mathbf{M} \)). Magnetic Intensity (\(\mathbf{H} \)). Magnetic Susceptibility and permeability. Relation between \(\mathbf{B}, \mathbf{H}, \mathbf{M} \). Ferromagnetism. B-H curve and hysteresis.

(4 Lectures)

(6 Lectures)

Electrical Circuits: AC Circuits: Kirchhoff’s laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit.

(4 Lectures)

Network theorems: Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits.

(4 Lectures)

(3 Lectures)

Reference Books:
- Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education
- Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
PHYSICS LAB-C III LAB
60 Lectures
1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
2. To study the characteristics of a series RC Circuit.
3. To determine an unknown Low Resistance using Potentiometer.
4. To determine an unknown Low Resistance using Carey Foster’s Bridge.
5. To compare capacitances using De’Sauty’s bridge.
6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
7. To verify the Thevenin and Norton theorems.
8. To verify the Superposition, and Maximum power transfer theorems.
9. To determine self-inductance of a coil by Anderson’s bridge.
10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
11. To study the response curve of a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q.
12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
14. To determine self-inductance of a coil by Rayleigh’s method.
15. To determine the mutual inductance of two coils by Absolute method.

Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Engineering Practical Physics, S.Panigrahi and B.Mallick, 2015, Cengage Learning.
PHYSICS-C IV: WAVES AND OPTICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Superposition of Collinear Harmonic oscillations: Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences.
(5 Lectures)

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods.
Lissajous Figures with equal an unequal frequency and their uses.
(2 Lectures)

(4 Lectures)

Velocity of Waves: Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton’s Formula for Velocity of Sound. Laplace’s Correction.
(6 Lectures)

(7 Lectures)

(3 Lectures)

Interference: Division of amplitude and wavefront. Young’s double slit experiment.
Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination
(Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton’s Rings:
Measurement of wavelength and refractive index. (9 Lectures)

Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required),
(2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5)
Visibility of Fringes. Fabry-Perot interferometer. (4 Lectures)

Diffraction: Kirchhoff’s Integral Theorem, Fresnel-Kirchhoff’s Integral formula.
(Qualitative discussion only) (2 Lectures)

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope.
Double slit. Multiple slits. Diffraction grating. Resolving power of grating. (8 Lectures)

Fresnel Diffraction: Fresnel’s Assumptions. Fresnel’s Half-Period Zones for Plane Wave.
Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone
Plate.
Fresnel’s Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire. (7 Lectures)

Holography: Principle of Holography. Recording and Reconstruction Method. Theory of
Holography as Interference between two Plane Waves. Point source holograms. (3 Lectures)

Reference Books:
- Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand
 Publications.

PHYSICS LAB- C IV LAB

60 Lectures
1. To determine the frequency of an electric tuning fork by Melde’s experiment and verify λ^2 – T law.
2. To investigate the motion of coupled oscillators.
3. To study Lissajous Figures.
4. Familiarization with: Schuster’s focusing; determination of angle of prism.
5. To determine refractive index of the Material of a prism using sodium source.
6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
7. To determine the wavelength of sodium source using Michelson’s interferometer.
8. To determine wavelength of sodium light using Fresnel Biprism.
10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
12. To determine dispersive power and resolving power of a plane diffraction grating.

Reference Books:
• Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
• A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
Semester III

PHYSICS-C V: MATHEMATICAL PHYSICS-II
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (4 Lectures)

(14 Lectures)

Reference Books:

- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books
PHYSICS LAB-C V LAB
60 Lectures

The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem

<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Numerical computation software Scilab</td>
<td>Introduction to Scilab, Advantages and disadvantages, Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensional arrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting (2), Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization (2) User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Complex and Character data, string function, Multidimensional arrays (2) an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program (2).</td>
</tr>
<tr>
<td>Curve fitting, Least square fit, Goodness of fit, standard deviation</td>
<td>Ohms law to calculate R, Hooke’s law to calculate spring Constant</td>
</tr>
<tr>
<td>Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values problems</td>
<td>Solution of mesh equations of electric circuits (3 meshes) Solution of coupled spring mass systems (3 masses)</td>
</tr>
<tr>
<td>Generation of Special functions using User defined functions in Scilab</td>
<td>Generating and plotting Legendre Polynomials Generating and plotting Bessel function</td>
</tr>
</tbody>
</table>
| Solution of ODE | First order differential equation
- Radioactive decay
- Current in RC, LC circuits with DC source
- Newton’s law of cooling
- Classical equations of motion
Second order Differential Equation
- Harmonic oscillator (no friction)
- Damped Harmonic oscillator
- Over damped
- Critical damped
- Oscillatory
- Forced Harmonic oscillator
- Transient and
- Steady state solution |
Apply above to LCR circuits also

Solve \(x^2 \frac{d^2 y}{dx^2} - 4x(1 + x) \frac{dy}{dx} + 2(1 + x) = x^3 \)

with the boundary conditions at

\(x = 1, y = \frac{1}{2} e^2, \frac{dy}{dx} = -\frac{3}{2} e^2 - 0.5, \)

in the range \(1 \leq x \leq 3. \) Plot \(y \) and \(\frac{dy}{dx} \) against \(x \) in the given range on the same graph.

Partial Differential Equation:
- Wave equation
- Heat equation
- Poisson equation
- Laplace equation

Using Scicos / xcos
- Generating square wave, sine wave, saw tooth wave
- Solution to harmonic oscillator
- Study of beat phenomenon
- Phase space plots
Reference Books:
- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C VI: THERMAL PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
(Include related problems for each topic)

Introduction to Thermodynamics

Maxwell’s Thermodynamic Relations: Derivations and applications of Maxwell’s Relations, Maxwell’s Relations:(1) Clausius Clapeyron equation, (2) Values of C\textsubscript{p}-C\textsubscript{v}. (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process.

Kinetic Theory of Gases

Reference Books:
- A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1958, Indian Press
- Thermal Physics, B.K. Agrawal, Lok Bharti Publications.

PHYSICS LAB- C VI LAB
60 Lectures
1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne’s constant flow method.
2. To determine the Coefficient of Thermal Conductivity of Cu by Searle’s Apparatus.
3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom’s Method.
4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton’s disc method.

5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).

6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.

7. To calibrate a thermocouple to measure temperature in a specified Range using
 (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.

Reference Books:
- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

PHYSICS-C VII: DIGITAL SYSTEMS AND APPLICATIONS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

(3 Lectures)

(3 Lectures)
Digital Circuits: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. (6 Lectures)

Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders. (4 Lectures)

Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. (3 Lectures)

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (2 Lectures)

Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. (4 Lectures)

Introduction to Assembly Language: 1 byte, 2 byte & 3 byte instructions. (4 Lectures)

Reference Books:

PHYSICS PRACTICAL-C VII LAB

60 Lectures
1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
2. To test a Diode and Transistor using a Multimeter.
3. To design a switch (NOT gate) using a transistor.
4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
5. To design a combinational logic system for a specified Truth Table.
6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
7. To minimize a given logic circuit.
8. Half Adder, Full Adder and 4-bit binary Adder.
9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
11. To build JK Master-slave flip-flop using Flip-Flop ICs.
12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
14. To design an astable multivibrator of given specifications using 555 Timer.
15. To design a monostable multivibrator of given specifications using 555 Timer.
16. Write the following programs using 8085 Microprocessor
 a) Addition and subtraction of numbers using direct addressing mode
 b) Addition and subtraction of numbers using indirect addressing mode
 c) Multiplication by repeated addition.
 d) Division by repeated subtraction.
 e) Handling of 16-bit Numbers.
 f) Use of CALL and RETURN Instruction.
 g) Block data handling.
 h) Other programs (e.g. Parity Check, using interrupts, etc.).

Reference Books:

Semester IV

PHYSICS-VIII: MATHEMATICAL PHYSICS-III

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, Coupled differential equations of 1st order. Solution of heat flow along infinite bar using Laplace transform. (15 Lectures)
Reference Books:
- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett

PHYSICS PRACTICAL-C VIII LAB
60 Lectures
Scilab/C++ based simulations experiments based on Mathematical Physics problems like

1. Solve differential equations:
 - dy/dx = e^x with y = 0 for x = 0
 - dy/dx + e^x y = x^2
 - d^2y/dt^2 + 2 dy/dt = -y
 - d2y/dt2 + e-tdy/dt = -y

2. Dirac Delta Function:
 Evaluate \(\frac{1}{\sqrt{2\pi\sigma^2}} \int e^{-\frac{(x-a)^2}{2\sigma^2}} (x + 3) dx \) for \(\sigma = 1, 0.1, 0.01 \) and show it tends to 5.

3. Fourier Series:
 Program to sum \(\sum_{n=1}^{\infty} 0.2^n \)
 Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:
 \[\int_{-1}^{1} P_n(\mu)P_m(\mu) \, d\mu = \delta_{n,m} \]
 Plot \(P_n(x), j_1(x) \)
 Show recursion relation

5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).
6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.

7. Evaluation of trigonometric functions e.g. \(\sin \theta \), Given Bessel’s function at N points find its value at an intermediate point. Complex analysis: Integrate \(1/(x^2+2) \) numerically and check with computer integration.

8. Compute the \(n^{th} \) roots of unity for \(n = 2, 3, \) and \(4 \).

9. Find the two square roots of \(-5+12j\).

10. Integral transform: FFT of

Reference Books:
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing
- https://web.stanford.edu/~boyd/ee102/laplace_ckt.pdf
- ocw.nthu.edu.tw/ocw/upload/12/244/12handout.pdf
PHYSICS-C IX: ELEMENTS OF MODERN PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
Planck’s quantum, Planck’s constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions. (14 Lectures)

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from Wave Packets impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle- application to virtual particles and range of an interaction. (5 Lectures)

Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; Probability and probability current densities in one dimension. (10 Lectures)

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as example; Quantum mechanical scattering and tunnelling in one dimension-across a step potential & rectangular potential barrier. (10 Lectures)

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. (6 Lectures)

Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli’s prediction of neutrino; Gamma ray
emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.

(8 Lectures)

Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions).

(3 Lectures)

(4 Lectures)

Reference Books:
- Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.

Additional Books for Reference
- Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
- Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill
PHYSICS PRACTICAL-C IX LAB

60 Lectures
1. Measurement of Planck’s constant using black body radiation and photo-detector
2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
3. To determine work function of material of filament of directly heated vacuum diode.
4. To determine the Planck’s constant using LEDs of at least 4 different colours.
5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
6. To determine the ionization potential of mercury.
7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
10. To show the tunneling effect in tunnel diode using I-V characteristics.
11. To determine the wavelength of laser source using diffraction of single slit.
12. To determine the wavelength of laser source using diffraction of double slits.
13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating

Reference Books
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Praakash & Ramakrishna, 11th Edn, 2011,Kitab Mahal

PHYSICS-C X: ANALOG SYSTEMS AND APPLICATIONS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Current Flow Mechanism in Forward and Reverse Biased Diode. (10 Lectures)

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell. (6 Lectures)

Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response. (4 Lectures)

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. (4 Lectures)

Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. (4 Lectures)

Conversion: Resistive network (Weighted and R-2R Ladder). Accuracy and Resolution. A/D Conversion (successive approximation) (3 Lectures)

Reference Books:
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

PHYSICS PRACTICAL-C X LAB
60 Lectures
1. To study V-I characteristics of PN junction diode, and Light emitting diode.
2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
5. To study the various biasing configurations of BJT for normal class A operation.
6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
8. To design a Wien bridge oscillator for given frequency using an op-amp.
9. To design a phase shift oscillator of given specifications using BJT.
10. To study the Colpitt’s oscillator.
11. To design a digital to analog converter (DAC) of given specifications.
12. To study the analog to digital convertor (ADC) IC.
13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
14. To design inverting amplifier using Op-amp (741,351) and study its frequency response
15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
16. To study the zero-crossing detector and comparator
17. To add two dc voltages using Op-amp in inverting and non-inverting mode
18. To design a precision Differential amplifier of given I/O specification using Op-amp.
19. To investigate the use of an op-amp as an Integrator.
20. To investigate the use of an op-amp as a Differentiator.
21. To design a circuit to simulate the solution of a 1st/2nd order differential equation.

Reference Books:
 Semester V

PHYSICS-C XI: QUANTUM MECHANICS AND APPLICATIONS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Time independent Schrodinger equation: Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle. (10 Lectures)

General discussion of bound states in an arbitrary potential: continuity of wavefunction, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite polynomials; ground state, zero point energy & uncertainty principle. (12 Lectures)

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wavefunctions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers l and m; s, p, d,... shells. (10 Lectures)

(8 Lectures)

Atoms in External Magnetic Fields: Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only).

(4 Lectures)

Term symbols. Spectra of Hydrogen and Alkali Atoms (Na etc.).

(10 Lectures)

Reference Books:
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.

Additional Books for Reference
- Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
PHYSICS PRACTICAL-C XI LAB

60 Lectures

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrödinger equation for the ground state and the first excited state of the hydrogen atom:

\[
\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} (V(r) - E) \text{ where } V(r) = -\frac{e^2}{r}
\]

Here, \(m \) is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \(\approx -13.6 \text{ eV} \). Take \(e = 3.795 \text{ (eVÅ)}^{1/2}, \hbar c = 1973 \text{ (eVÅ)} \) and \(m = 0.511 \times 10^6 \text{ eV/c}^2 \).

2. Solve the s-wave radial Schrödinger equation for an atom:

\[
\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} (V(r) - E)
\]

where \(m \) is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential \(V(r) = -\frac{e^2}{r} e^{-r/a} \)

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take \(e = 3.795 \text{ (eVÅ)}^{1/2}, m = 0.511 \times 10^6 \text{ eV/c}^2, \) and \(a = 3 \text{ Å}, 5 \text{ Å}, 7 \text{ Å} \). In these units \(\hbar c = 1973 \text{ (eVÅ)} \). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrödinger equation for a particle of mass \(m \):

\[
\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} (V(r) - E)
\]

For the anharmonic oscillator potential \(V(r) = \frac{1}{2} kr^2 + \frac{1}{3} br^3 \)

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose \(m = 940 \text{ MeV/c}^2, k = 100 \text{MeV fm}^{-2}, b = 0, 10, 30 \text{ MeV fm}^{-3} \) In these units, \(ch = 197.3 \text{ MeV fm} \). The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrödinger equation for the vibrations of hydrogen molecule:

\[
\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2\mu}{\hbar^2} (V(r) - E)\text{Where } \mu \text{ is the reduced mass of the two-atom system for the Morse potential } V(r) = D \left(e^{-2ar'} - e^{-ar'} \right), r' = \frac{r-r_0}{r_0}
\]

Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take: \(m = 940 \times 10^6 \text{ eV/C}^2, D = 0.755501 \text{ eV}, \alpha = 1.44, r_0 = 0.131349 \text{ Å} \)
Laboratory based experiments:
5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
7. To show the tunneling effect in tunnel diode using I-V characteristics.
8. Quantum efficiency of CCDs

Reference Books:
• Schaum's outline of Programming with C++. J.Hubbard, 2000, McGraw-Hill Publication
• An introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press

PHYSICS-C XII: SOLID STATE PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Ferroelectric Properties of Materials: Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. (6 lectures)

Reference Books:
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
PHYSICS PRACTICAL-C XII LAB

60 Lectures
1. Measurement of susceptibility of paramagnetic solution (Quinck’s Tube Method)
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
6. To determine the refractive index of a dielectric layer using SPR
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
9. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 °C) and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.

Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
PHYSICS-C XIII: ELECTROMAGNETIC THEORY
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and anisotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. (10 Lectures)

Optical Fibres: Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only). (3 Lectures)

Reference Books:
- Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

Additional Books for Reference

PHYSICS PRACTICAL-C XIII LAB
60 Lectures
1. To verify the law of Malus for plane polarized light.
2. To determine the specific rotation of sugar solution using Polarimeter.
3. To analyze elliptically polarized Light by using a Babinet’s compensator.
4. To study dependence of radiation on angle for a simple Dipole antenna.
5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
6. To study the reflection, refraction of microwaves
7. To study Polarization and double slit interference in microwaves.
8. To determine the refractive index of liquid by total internal reflection using Wollaston’s air-film.
9. To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
10. To study the polarization of light by reflection and determine the polarizing angle for air-glass interface.
11. To verify the Stefan’s law of radiation and to determine Stefan’s constant.
12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

PHYSICS-C XIV: STATISTICAL MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck’s law.

Reference Books:
- Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press
PHYSICS PRACTICAL-C XIV LAB

60 Lectures

Use C/C++/Scilab/other numerical simulations for solving the problems based on Statistical Mechanics like

1. Computational analysis of the behavior of a collection of particles in a box that satisfy Newtonian mechanics and interact via the Lennard-Jones potential, varying the total number of particles N and the initial conditions:
 a) Study of local number density in the equilibrium state (i) average; (ii) fluctuations
 b) Study of transient behavior of the system (approach to equilibrium)
 c) Relationship of large N and the arrow of time
 d) Computation of the velocity distribution of particles for the system and comparison with the Maxwell velocity distribution
 e) Computation and study of mean molecular speed and its dependence on particle mass
 f) Computation of fraction of molecules in an ideal gas having speed near the most probable speed

2. Computation of the partition function $Z(\beta)$ for examples of systems with a finite number of single particle levels (e.g., 2 level, 3 level, etc.) and a finite number of non-interacting particles N under Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics:
 a) Study of how $Z(\beta)$, average energy $<E>$, energy fluctuation ΔE, specific heat at constant volume C_v, depend upon the temperature, total number of particles N and the spectrum of single particle states.
 b) Ratios of occupation numbers of various states for the systems considered above
 c) Computation of physical quantities at large and small temperature T and comparison of various statistics at large and small temperature T.

3. Plot Planck’s law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature.

4. Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature and low temperature and compare them for these two cases.

5. Plot the following functions with energy at different temperatures
 a) Maxwell-Boltzmann distribution
b) Fermi-Dirac distribution

c) Bose-Einstein distribution

Reference Books:

- Elementary Numerical Analysis, K.E. Atkinson, 3rd Ed. 2007, Wiley India Edition
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer

PHYSICS-DSE-I: EXPERIMENTAL TECHNIQUES
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Measurements: Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and curve fitting. Gaussian distribution. (7 Lectures)

Digital Multimeter: Comparison of analog and digital instruments. Block diagram of digital multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement.

Impedance Bridges and Q-meter: Block diagram and working principles of RLC bridge. Q-meter and its working operation. Digital LCR bridge.

Vacuum Systems: Characteristics of vacuum: Gas law, Mean free path. Application of vacuum. Vacuum system- Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump, Pumping speed, Pressure gauges (Pirani, Penning, ionization).

Reference Books:
- Experimental Methods for Engineers, J.P. Holman, McGraw Hill
PRACTICAL- DSE-I LAB: EXPERIMENTAL TECHNIQUES

60 Lectures

1. Determine output characteristics of a LVDT & measure displacement using LVDT
4. To study the characteristics of a Thermostat and determine its parameters.
5. Study of distance measurement using ultrasonic transducer.
6. Calibrate Semiconductor type temperature sensor (AD590, LM35, or LM75)
7. To measure the change in temperature of ambient using Resistance Temperature Device (RTD).
8. Create vacuum in a small chamber using a mechanical (rotary) pump and measure the chamber pressure using a pressure gauge.
9. Comparison of pickup of noise in cables of different types (co-axial, single shielded, double shielded, without shielding) of 2m length, understanding of importance of grounding using function generator of mV level & an oscilloscope.
10. To design and study the Sample and Hold Circuit.
11. Design and analyze the Clippers and Clampers circuits using junction diode
12. To plot the frequency response of a microphone.
13. To measure Q of a coil and influence of frequency, using a Q-meter.

Reference Books:

- Principles of Electronic Instrumentation, D. Patranabis, PHI Learning Pvt. Ltd.
- Electronic circuits: Handbook of design & applications, U.Tietze, Ch.Schenk, Springer
PHYSICS-DSE-II: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Embedded system introduction: Introduction to embedded systems and general purpose computer systems, architecture of embedded system, classifications, applications and purpose of embedded systems, challenges & design issues in embedded systems, operational and non-operational quality attributes of embedded systems, elemental description of embedded processors and microcontrollers.

(4 Lectures)

Review of microprocessors: Organization of Microprocessor based system, 8085μp pindiagram and architecture, concept of data bus and address bus, 8085 programming model, instruction classification, subroutines, stacks and its implementation, delay subroutines, hardware and software interrupts.

(4 Lectures)

8051 microcontroller: Introduction and block diagram of 8051 microcontroller, architecture of 8051, overview of 8051 family, 8051 assembly language programming, Program Counter and ROM memory map, Data types and directives, Flag bits and Program Status Word (PSW) register, Jump, loop and call instructions.

(12 Lectures)

8051 I/O port programming: Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description & their functions, I/O port programming in 8051 (using assembly language), I/O programming: Bit manipulation.

(4 Lectures)

Programming: 8051 addressing modes and accessing memory using various addressing modes, assembly language instructions using each addressing mode, arithmetic and logic instructions, 8051 programming in C: for time delay & I/O operations and manipulation, for arithmetic and logic operations, for ASCII and BCD conversions.

(12 Lectures)

Timer and counter programming: Programming 8051 timers, counter programming.
Serial port programming with and without interrupt: Introduction to 8051 interrupts, programming timer interrupts, programming external hardware interrupts and serial communication interrupt, interrupt priority in the 8051.

Interfacing 8051 microcontroller to peripherals: Parallel and serial ADC, DAC interfacing, LCD interfacing.

Programming Embedded Systems: Structure of embedded program, infinite loop, compiling, linking and locating, downloading and debugging.

Embedded system design and development: Embedded system development environment, file types generated after cross compilation, disassembler/decompiler, simulator, emulator and debugging, embedded product development life-cycle, trends in embedded industry.

Introduction to Arduino: Pin diagram and description of Arduino UNO. Basic programming.

Reference Books:
- Embedded microcomputer system: Real time interfacing, J.W.Valvano, 2000, Brooks/Cole
- Embedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011, C engage Learning
PRACTICALS- DSE-II LAB: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS

60 Lectures

8051 microcontroller based Programs and experiments

1. To find that the given numbers is prime or not.
2. To find the factorial of a number.
3. Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.
4. Use one of the four ports of 8051 for O/P interfaced to eight LED’s. Simulate binary counter (8 bit) on LED’s.
5. Program to glow the first four LEDs then next four using TIMER application.
6. Program to rotate the contents of the accumulator first right and then left.
7. Program to run a countdown from 9-0 in the seven segment LED display.
8. To interface seven segment LED display with 8051 microcontroller and display ‘HELP’ in the seven segment LED display.
9. To toggle ‘1234’ as ‘1324’ in the seven segment LED display.
10. Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clockwise direction.
11. Application of embedded systems: Temperature measurement, some information on LCD display, interfacing a keyboard.

Arduino based programs and experiments:

12. Make a LED flash at different time intervals.
13. To vary the intensity of LED connected to Arduino
14. To control speed of a stepper motor using a potential meter connected to Arduino
15. To display “PHYSICS” on LCD/CRO.

Reference Books:

• Embedded Microcomputer System: Real Time Interfacing, J.W. Valvano, 2000, Brooks/Cole
• Embedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011,Cengage Learning

PHYSICS-DSE-III: PHYSICS OF DEVICES AND INSTRUMENTS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Devices: Characteristic and small signal equivalent circuits of UJT and JFET. Metal-semiconductor Junction. Metal oxide semiconductor (MOS) device. Ideal MOS and Flat Band voltage. SiO2-Si based MOS. MOSFET– their frequency limits. Enhancement and Depletion Mode MOSFETS, CMOS. Charge coupled devices. Tunnel diode. (14 Lectures)

Power supply and Filters: Block Diagram of a Power Supply, Qualitative idea of C and L Filters. IC Regulators, Line and load regulation, Short circuit protection (3 Lectures)

Active and Passive Filters, Low Pass, High Pass, Band Pass and band Reject Filters. (3 Lectures)

Multivibrators: Astable and Monostable Multivibrators using transistors. (3 Lectures)

Phase Locked Loop(PLL): Basic Principles, Phase detector(XOR & edge triggered), Voltage Controlled Oscillator (Basics, varactor). Loop Filter– Function, Loop Filter Circuits, transient response, lock and capture. Basic idea of PLL IC (565 or 4046). (5 Lectures)

elements of USB transfers. Devices (Basic idea of UART). Parallel Communications: General Purpose Interface Bus (GPIB), GPIB signals and lines, Handshaking and interface management, Implementation of a GPIB on a PC. Basic idea of sending data through a COM port. *(5 Lectures)*

Introduction to communication systems: Block diagram of electronic communication system, Need for modulation. Amplitude modulation. Modulation Index. Analysis of Amplitude Modulated wave. Sideband frequencies in AM wave. CE Amplitude Modulator. Demodulation of AM wave using Diode Detector. basic idea of Frequency, Phase, Pulse and Digital Modulation including ASK, PSK, FSK. *(15 lectures)*

Reference Books:
- Physics of Semiconductor Devices, S.M. Sze & K.K. Ng, 3rd Ed. 2008, John Wiley & Sons
- PC based instrumentation; Concepts & Practice, N.Mathivanan, 2007, Prentice-Hall of India

PRACTICAL- DSE-III LAB: PHYSICS OF DEVICES AND INSTRUMENTS 60 Lectures

Experiments from both Section A and Section B:

Section-A
1. To design a power supply using bridge rectifier and study effect of C-filter.
2. To design the active Low pass and High pass filters of given specification.
3. To design the active filter (wide band pass and band reject) of given specification.
4. To study the output and transfer characteristics of a JFET.
5. To design a common source JFET Amplifier and study its frequency response.
6. To study the output characteristics of a MOSFE
7. To study the characteristics of a UJT and design a simple Relaxation Oscillator.
8. To design an Amplitude Modulator using Transistor.
9. To design PWM, PPM, PAM and Pulse code modulation using ICs.
10. To design an Astable multivibrator of given specifications using transistor.
11. To study a PLL IC (Lock and capture range).
12. To study envelope detector for demodulation of AM signal.
13. Study of ASK and FSK modulator.
14. Glow an LED via USB port of PC.
15. Sense the input voltage at a pin of USB port and subsequently glow the LED connected with another pin of USB port.

Section-B:
SPICE/MULTISIM simulations for electrical networks and electronic circuits
1. To verify the Thevenin and Norton Theorems.
2. Design and analyze the series and parallel LCR circuits
3. Design the inverting and non-inverting amplifier using an Op-Amp of given gain
4. Design and Verification of op-amp as integrator and differentiator
5. Design the 1st order active low pass and high pass filters of given cutoff frequency
6. Design a Wein’s Bridge oscillator of given frequency.
7. Design clocked SR and JK Flip-Flop’s using NAND Gates
8. Design 4-bit asynchronous counter using Flip-Flop ICs
9. Design the CE amplifier of a given gain and its frequency response.
10. Design an Astable multivibrator using IC555 of given duty cycle.

Reference Books:
PHYSICS-DSE-IV: ADVANCED MATHEMATICAL PHYSICS-I
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
The emphasis of the course is on applications in solving problems of interest to physicists.
Students are to be examined on the basis of problems, seen and unseen.

(20 lectures)

(10 Lectures)

Reference Books:

PHYSICS PRACTICAL-DSE-IV LAB: ADVANCED MATHEMATICAL PHYSICS-I

60 Lectures

Scilab/ C++ based simulations experiments based on Mathematical Physics problems like

1. Linear algebra:
 - Multiplication of two 3 x 3 matrices.
• Eigenvalue and eigenvectors of

\[
\begin{pmatrix}
2 & 1 & 1 \\
1 & 3 & 2 \\
3 & 1 & 4
\end{pmatrix};
\begin{pmatrix}
1 & -i & 3 + 4i \\
+i & 2 & 4 \\
3 - 4i & 4 & 3
\end{pmatrix};
\begin{pmatrix}
2 & -i & 2i \\
+i & 4 & 3 \\
-2i & 3 & 5
\end{pmatrix}
\]

2. Orthogonal polynomials as eigenfunctions of Hermitian differential operators.

3. Determination of the principal axes of moment of inertia through diagonalization.

5. Lagrangian formulation in Classical Mechanics with constraints.

6. Study of geodesics in Euclidean and other spaces (surface of a sphere, etc).

7. Estimation of ground state energy and wave function of a quantum system.

Reference Books:
PHYSICS-DSE-V: Advanced Mathematical Physics –II
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

Reference Books:
- Group Theory and its Applications to Physical Problems by Morton Hamermesh, 1989, Dover
PHYSICS-DSE-VI: CLASSICAL DYNAMICS
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures
The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Application to the motion of a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates and velocities, Hamilton’s principle, Lagrangian and the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling body in uniform gravity; applications to simple systems such as coupled oscillators Canonical momenta & Hamiltonian. Hamilton's equations of motion.
Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton’s equation for Simple Harmonic Oscillations; particle in a central force field- conservation of angular momentum and energy. (22 Lectures)

Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical springs. (10 Lectures)

Fluid Dynamics: Density and pressure P in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille’s equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number.

Reference Books:
- Introduction to Electrodynamics, D.J. Griffiths, 2012, Pearson Education.

PHYSICS-DSE-VII: APPLIED DYNAMICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Introduction to Dynamical systems: Definition of a continuous first order dynamical system.
The idea of phase space, flows and trajectories. Simple mechanical systems as first order dynamical systems: the free particle, particle under uniform gravity, simple and damped harmonic oscillator. Sketching flows and trajectories in phase space; sketching variables as functions of time, relating the equations and pictures to the underlying physical intuition.
Other examples of dynamical systems –
In Biology: Population models e.g. exponential growth and decay, logistic growth, species competition, predator-prey dynamics, simple genetic circuits
In Chemistry: Rate equations for chemical reactions e.g. auto catalysis, bistability
In Economics: Examples from game theory.
Illustrative examples from other disciplines.
Fixed points, attractors, stability of fixed points, basin of attraction, notion of qualitative analysis of dynamical systems, with applications to the above examples.
Computing and visualizing trajectories on the computer using software packages.
Discrete dynamical systems. The logistic map as an example. (26 Lectures)

Introduction to Chaos and Fractals: Examples of 2-dimensional billiard, Projection of the trajectory on momentum space. Sinai Billiard and its variants. Computational visualization of trajectories in the Sinai Billiard. Randomization and ergodicity in the divergence of nearby phase space trajectories, and dependence of time scale of divergence on the size of obstacle. Electron motion in mesoscopic conductors as a chaotic billiard problem. Other examples of chaotic systems; visualization of their trajectories on the computer.
Self similarity and fractal geometry: Fractals in nature – trees, coastlines, earthquakes, etc. Need for fractal dimension to describe self-similar structure. Deterministic fractal vs. self-similar fractal structure. Fractals in dynamics – Serpinski gasket and DLA.
Nonlinear time series analysis and chaos characterization: Detecting chaos from return map. Power spectrum, autocorrelation, Lyapunov exponent, correlation dimension. (20 Lectures)

Elementary Fluid Dynamics: Importance of fluids: Fluids in the pure sciences, Fluids in technology. Study of fluids: Theoretical approach, experimental fluid dynamics, computational fluid dynamics. Basic physics of fluids: The continuum hypothesis-concept of fluid element or fluid parcel; Definition of a fluid- shear stress; Fluid properties- viscosity, thermal conductivity, mass diffusivity, other fluid properties and equation of state; Flow phenomena- flow dimensionality, steady and unsteady flows, uniform & non-uniform flows, viscous & inviscid flows, incompressible & compressible flows, laminar and turbulent flows, rotational and irrotational flows, separated & unseparated flows. Flow visualization - streamlines, pathlines, streaklines. (14 Lectures)
Reference Books

- Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer.
- An Introduction to Fluid Dynamics, G.K.Batchelor, Cambridge Univ. Press, 2002

__

PHYSICS PRACTICAL-DSE-VII LAB: APPLIED DYNAMICS 60 Lectures
Laboratory/Computing and visualizing trajectories using software such as Scilab, Maple, Octave, XPPAUT based on Applied Dynamics problems like

1. To determine the coupling coefficient of coupled pendulums.
2. To determine the coupling coefficient of coupled oscillators.
3. To determine the coupling and damping coefficient of damped coupled oscillator.
4. To study population models e.g. exponential growth and decay, logistic growth, species competition, predator-prey dynamics, simple genetic circuits.
5. To study rate equations for chemical reactions e.g. auto catalysis, bistability.
6. To study examples from game theory.
7. Computational visualization of trajectories in the Sinai Billiard.
11. Computational visualization of fractal formations of Fractals in nature – trees, coastlines, earthquakes.

Reference Books:

- Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer.
- An Introduction to Fluid Dynamics, G.K.Batchelor, Cambridge Univ. Press, 2002

PHYSICS- DSE-VIII: COMMUNICATION ELECTRONICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

(8 Lectures)

Analog Modulation: Amplitude Modulation, modulation index and frequency spectrum. Generation of AM (Emitter Modulation), Amplitude Demodulation (diode detector), Concept of Single side band generation and detection. Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, equivalence between FM and PM, Generation of FM using VCO, FM detector (slope detector), Qualitative idea of Super heterodyne receiver

(12 Lectures)

Analog Pulse Modulation: Channel capacity, Sampling theorem, Basic Principles-PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing.

(9 Lectures)

Digital Pulse Modulation: Need for digital transmission, Pulse Code Modulation, Digital Carrier Modulation Techniques, Sampling, Quantization and Encoding. Concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Binary Phase Shift Keying (BPSK).

(10 Lectures)
Introduction to Communication and Navigation systems:

Satellite Communication – Introduction, need, Geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Satellite visibility, transponders (C-Band), path loss, ground station, simplified block diagram of earth station. Uplink and downlink. (10 Lectures)

Mobile Telephony System – Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset, 2G, 3G and 4G concepts (qualitative only). (10 Lectures)

GPS navigation system (qualitative idea only) (1 Lecture)

Reference Books:
- Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.
- Communication Systems, S. Haykin, 2006, Wiley India
- Wireless communications, Andrea Goldsmith, 2015, Cambridge University Press

PHYSICS PRACTICAL-DSE-VIII LAB: COMMUNICATION ELECTRONICS LAB

60 Lectures

1. To design an Amplitude Modulator using Transistor
2. To study envelope detector for demodulation of AM signal
3. To study FM - Generator and Detector circuit
4. To study AM Transmitter and Receiver
5. To study FM Transmitter and Receiver
6. To study Time Division Multiplexing (TDM)
7. To study Pulse Amplitude Modulation (PAM)
8. To study Pulse Width Modulation (PWM)
9. To study Pulse Position Modulation (PPM)
10. To study ASK, PSK and FSK modulators

Reference Books:

PHYSICS-DSE-IX: Nuclear and Particle Physics
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

8 Lectures

Nuclear Models: Liquid drop model approach, semi empirical mass formula and its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force.

12 Lectures

Radioactivity decay: (a) Alpha decay: basics of α-decay processes, theory of α-emission, Gamow factor, Geiger Nuttall law, α-decay spectroscopy. (b) β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.

10 Lectures

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering).

8 Lectures
Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.

(8 Lectures)

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

(8 Lectures)

Particle Accelerators: Accelerator facility available in India: Van-de Graaff Generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

(5 Lectures)

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.

(14 Lectures)

Reference Books:

- Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
- Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

Astronomical techniques: Basic Optical Definitions for Astronomy (Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and Their Use with Telescopes (Types of Detectors, detection Limits with Telescopes).

Stellar spectra and classification Structure (Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification)

Galaxy and the Dark Matter, Nature of the Spiral Arms), Stars and Star Clusters of the Milky Way, Properties of and around the Galactic Nucleus.

Large scale structure & expanding universe: Cosmic Distance Ladder (An Example from Terrestrial Physics, Distance Measurement using Cepheid Variables), Hubble’s Law (Distance-Velocity Relation), Clusters of Galaxies (Virial theorem and Dark Matter).

Reference Books:
- Fundamental of Astronomy (Fourth Edition), H. Karttunen et al. Springer
- Textbook of Astronomy and Astrophysics with elements of cosmology, V.B. Bhatia, Narosa Publication.

PHYSICS-DSE-XI: Atmospheric Physics
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

General features of Earth’s atmosphere: Thermal structure of the Earth’s Atmosphere, Ionosphere, Composition of atmosphere, Hydrostatic equation, Potential temperature, Atmospheric Thermodynamics, Greenhouse effect and effective temperature of Earth, Local
winds, monsoons, fogs, clouds, precipitation, Atmospheric boundary layer, Sea breeze and land breeze. Instruments for meteorological observations, including RS/RW, meteorological processes and different systems, fronts, Cyclones and anticyclones, thunderstorms. **(12 Lectures)**

Atmospheric Dynamics: Scale analysis, Fundamental forces, Basic conservation laws, The Vectorial form of the momentum equation in rotating coordinate system, scale analysis of equation of motion, Applications of the basic equations, Circulations and vorticity, Atmospheric oscillations, Quasi biennial oscillation, annual and semi-annual oscillations, Mesoscale circulations, The general circulations, Tropical dynamics. **(12 Lectures)**

Atmospheric Waves: Surface water waves, wave dispersion, acoustic waves, buoyancy waves, propagation of atmospheric gravity waves (AGWs) in a nonhomogeneous medium, Lamb wave, Rossby waves and its propagation in three dimensions and in sheared flow, wave absorption, non-linear consideration **(12 Lectures)**

Atmospheric Radar and Lidar: Radar equation and return signal, Signal processing and detection, Various type of atmospheric radars, Application of radars to study atmospheric phenomena, Lidar and its applications, Application of Lidar to study atmospheric phenomenon. Data analysis tools and techniques. **(12 Lectures)**

Atmospheric Aerosols: Spectral distribution of the solar radiation, Classification and properties of aerosols, Production and removal mechanisms, Concentrations and size distribution, Radiative and health effects, Observational techniques for aerosols, Absorption and scattering of solar radiation, Rayleigh scattering and Mie scattering, Bouguer-Lambert law, Principles of radiometry, Optical phenomena in atmosphere, Aerosol studies using Lidars. **(12 Lectures)**

Reference Books:
- An Introduction to dynamic meteorology – James R Holton; Academic Press, 2004
PRACTICALS-DSE-XI LAB: Atmospheric Physics

60 Lectures

Scilab/C++ based simulations experiments based on Atmospheric Physics problems like

1. Numerical Simulation for atmospheric waves using dispersion relations
 (a) Atmospheric gravity waves (AGW)
 (b) Kelvin waves
 (c) Rossby waves, and mountain waves

2. Offline and online processing of radar data
 (a) VHF radar,
 (b) X-band radar, and
 (c) UHF radar

3. Offline and online processing of LIDAR data

4. Radiosonde data and its interpretation in terms of atmospheric parameters using vertical profiles in different regions of the globe.

5. Handling of satellite data and plotting of atmospheric parameters using radio occultation technique

6. Time series analysis of temperature using long term data over metropolitan cities in India – an approach to understand the climate change

Reference Books:

- An Introduction to dynamic meteorology – James R Holton; Academic Press, 2004
PHYSICS-DSE-XII: Nano Materials and Applications
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.

APPLICATIONS: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based

Reference books:
- C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

PRACTICALS-DSE-XII LAB: Nano Materials and Applications

60 Lectures

1. Synthesis of metal nanoparticles by chemical route.
2. Synthesis of semiconductor nanoparticles.
3. Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotometer.
4. XRD pattern of nanomaterials and estimation of particle size.
5. To study the effect of size on color of nanomaterials.
6. To prepare composite of CNTs with other materials.
8. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD.
9. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study transmittance spectra in UV-Visible region.
10. Prepare a thin film capacitor and measure capacitance as a function of temperature or frequency.
11. Fabricate a PN diode by diffusing Al over the surface of N-type Si and study its V-I characteristic.

Reference Books:
- C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

PHYSICS-DSE-XIII: Physics of Earth
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

The Earth and the Universe: (17 Lectures)
(a) Origin of universe, creation of elements and earth. A Holistic understanding of our dynamic planet through Astronomy, Geology, Meteorology and Oceanography. Introduction to various branches of Earth Sciences.
(b) General characteristics and origin of the Universe. The Milky Way galaxy, solar system, Earth’s orbit and spin, the Moon’s orbit and spin. The terrestrial and Jovian planets. Meteorites & Asteroids. Earth in the Solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age.
(c) Energy and particle fluxes incident on the Earth.
(d) The Cosmic Microwave Background.

Structure: (18 Lectures)
(a) The Solid Earth: Mass, dimensions, shape and topography, internal structure, magnetic field, geothermal energy. How do we learn about Earth’s interior?
(b) The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. River systems.
(c) The Atmosphere: variation of temperature, density and composition with altitude, clouds.
(d) The Cryosphere: Polar caps and ice sheets. Mountain glaciers.

Dynamical Processes: (18 Lectures)

Climate:
 i. Earth’s temperature and greenhouse effect.
 ii. Paleoclimate and recent climate changes.
 iii. The Indian monsoon system.

(d) Biosphere: Water cycle, Carbon cycle, Nitrogen cycle, Phosphorous cycle. The role of cycles in maintaining a steady state.

Evolution: (18 Lectures)
Nature of stratigraphic records, Standard stratigraphic time scale and introduction to the concept of time in geological studies. Introduction to geochronological methods in their application in geological studies. History of development in concepts of uniformitarianism, catastrophism and neptunism. Law of superposition and faunal succession. Introduction to the geology and geomorphology of Indian subcontinent.
1. Time line of major geological and biological events.
3. Role of the biosphere in shaping the environment.
Disturbing the Earth – Contemporary dilemmas (4 Lectures)

(a) Human population growth.
(b) Atmosphere: Green house gas emissions, climate change, air pollution.
(c) Hydrosphere: Fresh water depletion.
(d) Geosphere: Chemical effluents, nuclear waste.
(e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of ecosystems.

Reference Books:

PHYSICS-DSE-XIV: DIGITAL SIGNAL PROCESSING
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the Independent Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd Signals, Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum; Graphical Method; Analytical Method, Properties of Convolution; Commutative; Associative; Distributive; Shift; Sum Property System Response to Periodic Inputs, Relationship Between LTI System Properties and the Impulse Response; Causality; Stability; Invertibility, Unit Step Response. (10 Lectures)

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-Time Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting; Differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property. **Thez-Transform:** Bilateral (Two-Sided) z-Transform, Inverse z-Transform, Relationship Between z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence; Properties of ROC, Properties; Time Reversal; Differentiation in the z-Domain; Power Series
Expansion Method (or Long Division Method); Analysis and Characterization of LTI Systems; Transfer Function and Difference-Equation System. Solving Difference Equations. (15 Lectures)

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR Digital Filters, Simple IIR Digital Filters, All pass Filters, Averaging Filters, Notch Filters. (5 Lectures)

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting; Circular Time Reversal; Multiplication Property; Parseval’s Relation, Linear Convolution Using the DFT (Linear Convolution Using Circular Convolution), Circular Convolution as Linear Convolution with aliasing. (10 Lectures)

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity Properties of the Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm; Decimation-In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms. (5 Lectures)

Realization of Digital Filters: Non Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures (Transposed Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR systems; Direct-Form I. **Finite Impulse Response Digital Filter:** Advantages and Disadvantages of Digital Filters, Types of Digital Filters: FIR and IIR Filters; Difference Between FIR and IIR Filters, Desirability of Linear-Phase Filters, Frequency Response of Linear-Phase FIR Filters, Impulse Responses of Ideal Filters, Windowing Method; Rectangular; Triangular; Kaiser Window, FIR Digital Differentiators. **Infinite Impulse Response Digital Filter:** Design of IIR Filters from Analog Filters, IIR Filter Design by Approximation of Derivatives, Backward Difference Algorithm, Impulse Invariance Method. (15 Lectures)

Reference Books:
- Digital Signal Processing, Tarun Kumar Rawat, 2015, Oxford University Press, India
Scilab based simulations experiments based problems like
1. Write a program to generate and plot the following sequences: (a) Unit sample sequence \(\delta(n) \), (b) unit step sequence \(u(n) \), (c) ramp sequence \(r(n) \), (d) real valued exponential sequence \(x(n) = (0.8)^n u(n) \) for \(0 \leq n \leq 50 \).

2. Write a program to compute the convolution sum of a rectangle signal (or gate function) with itself for \(N = 5 \)

\[
x(n) = \text{rect} \left(\frac{n}{2N} \right) = \prod \left(\frac{n}{2N} \right) = \begin{cases} 1 & \text{if } -N \leq n \leq N \\ 0 & \text{otherwise} \end{cases}
\]

3. An LTI system is specified by the difference equation

\[
y(n) = 0.8y(n - 1) + x(n)
\]
(a) Determine \(H(e^{jw}) \)
(b) Calculate and plot the steady state response \(y_{ss}(n) \) to \(x(n) = \cos(0.5\pi n) u(n) \)

4. Given a casual system

\[
y(n) = 0.9y(n - 1) + x(n)
\]
(a) Find \(H(z) \) and sketch its pole-zero plot
(b) Plot the frequency response \(|H(e^{jw})| \) and \(H(e^{jw}) \)

5. Design a digital filter to eliminate the lower frequency sinusoid of \(x(t) = \sin 7t + \sin 200t \). The sampling frequency is \(f_s = 500 \text{ Hz} \). Plot its pole zero diagram, magnitude response, input and output of the filter.

6. Let \(x(n) \) be a 4-point sequence:

\[
x(n) = \begin{cases} 1, 1, 1, 1 & \text{for } 0 \leq n \leq 3 \\ 0 & \text{otherwise} \end{cases}
\]
Compute the DTFT \(X(e^{jw}) \) and plot its magnitude
(a) Compute and plot the 4 point DFT of \(x(n) \)
(b) Compute and plot the 8 point DFT of \(x(n) \) (by appending 4 zeros)
(c) Compute and plot the 16 point DFT of \(x(n) \) (by appending 12 zeros)

7. Let \(x(n) \) and \(h(n) \) be the two 4-point sequences,
\[
x(n) = \{1, 2, 2, 1\}
\]
\[
h(n) = \{1, -1, -1, 1\}
\]
Write a program to compute their linear convolution using circular convolution.

8. Using a rectangular window, design a FIR low-pass filter with a pass-band gain of unity, cut-off frequency of 1000 Hz and working at a sampling frequency of 5 KHz. Take the length of the impulse response as 17.

9. Design an FIR filter to meet the following specifications:
 passband edge \(F_p = 2 \) KHz
 stopband edge \(F_s = 5 \) KHz
 Passband attenuation \(A_p = 2 \) dB
 Stopband attenuation \(A_s = 42 \) dB
 Sampling frequency \(F_s = 20 \) KHz

10. The frequency response of a linear phase digital differentiator is given by
 \[
 H_d(e^{jw}) = jw e^{-j\tau w} \quad |w| \leq \pi
 \]
 Using a Hamming window of length \(M = 21 \), design a digital FIR differentiator.
 Plot the amplitude response.

Reference Books:
- Digital Signal Processing, Tarun Kumar Rawat, Oxford University Press, India.
PHYSICS-DSE-XV: Medical Physics
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

PHYSICS OF THE BODY-I

PHYSICS OF THE BODY-II
Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. Optical system of the body: Physics of the eye. Electrical system of the body: Physics of the nervous system, Electrical signals and information transfer. (10 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-I

RADIATION PHYSICS: Radiation units exposure, absorbed dose, units: rad, gray, relative biological effectiveness, effective dose- Rem & Sievert, inverse square law. Interaction of radiation with matter Compton & photoelectric effect, linear attenuation coefficient. Radiation
Detectors: ionization (Thimble chamber, condenser chamber), chamber. Geiger Muller counter, Scintillation counters and Solid State detectors, TFT. **(7 Lectures)**

MEDICAL IMAGING PHYSICS: Evolution of Medical Imaging, X-ray diagnostics and imaging, Physics of nuclear magnetic resonance (NMR), NMR imaging, MRI Radiological imaging, Ultrasound imaging, Physics of Doppler with applications and modes, Vascular Doppler. Radiography: Filters, grids, cassette, X-ray film, film processing, fluoroscopy. **Computed tomography scanner**- principle and function, display, generations, mammography. Thyroid uptake system and Gamma camera (Only Principle, function and display). **(9 Lectures)**

RADIATION ONCOLOGY PHYSICS: External Beam Therapy (Basic Idea): Telecobalt, Conformal Radiation Therapy (CRT), 3DCRT, IMRT, Image Guided Radiotherapy, EPID, Rapid Arc, Proton Therapy, Gamma Knife, Cyber Knife. Contact Beam Therapy (Basic Idea): Brachytherapy- LDR and HDR, Intra Operative Brachytherapy. Radiotherapy, kilo voltage machines, deep therapy machines, Telecobalt machines, Medical linear accelerator. Basics of Teletherapy units, deep X-ray, Telecobalt units, Radiation protection, external beam characteristics, dose maximum and build up – bolus, percentage depth dose, tissue maximum ratio and tissue phantom ratio, Planned target Volume and Gross Tumour Volume. **(9 Lectures)**

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-II
Reference Books:
- Medical Physics, J.R. Cameron and J.G. Skofronick, Wiley (1978)
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
- Handbook of Physics in Diagnostic Imaging: R.S. Livingstone: B.I. Publication Pvt Ltd.
- The Physics of Radiology - H E Johns and Cunningham.

PHYSICS-DSE-XV LAB: Medical Physics
60 Lectures
1. Understanding the working of a manual Hg Blood Pressure monitor and measure the Blood Pressure.
2. Understanding the working of a manual optical eye-testing machine and to learn eye-testing procedure.
3. Correction of Myopia (short sightedness) using a combination of lenses on an optical bench/breadboard.
4. Correction of Hypermetropia/Hyperopia (long sightedness) using a combination of lenses on an optical bench/breadboard.
5. To learn working of Thermoluminescent dosimeter (TLD) badges and measure the background radiation.
6. Familiarization with Geiger-Muller (GM) Counter and to measure background radiation.
7. Familiarization with Radiation meter and to measure background radiation.
8. Familiarization with the Use of a Vascular Doppler.
Reference Books:
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
- The Physics of Radiology-H E Johns and Cunningham.

PHYSICS-DSE-XVI: Biological Physics
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

Overview: (9 lectures)

Molecules of life: (22 lectures)
Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling.
Typical populations of molecules of various types present in cells, their rates of production and turnover. Energy required to make a bacterial cell.
Simplified mathematical models of transcription and translation, small genetic circuits and signaling pathways. Random walks and applications to biology. Mathematical models to be studied analytically and computationally.

The complexity of life:

(30 lectures)

At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cell types as distinct attractors of a dynamical system. Stem cells and cellular differentiation. Pattern formation and development.

At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems.

Evolution:

(14 lectures)

The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution. The concept of genotype-phenotype map. Examples.

References:

- Physics in Molecular Biology; Kim Sneppen & Giovanni Zocchi (CUP 2005)
- An Introduction to Systems Biology; Uri Alon (Chapman and Hall/CRC, Special Indian Edition, 2013)
- Evolution; M. Ridley (Blackwell Publishers, 2009, 3rd edition)
6.5.2. Skill Enhancement Course (SEC) for B.Sc. (Hons.) Physics and B.Sc. (Physics) with PCM, PMC and PEM Combinations

SEC-I: PHYSICS WORKSHOP SKILL
(Credits: 02)
30 Lectures
The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode.

Introduction: Measuring units. conversion to SI and CGS. Familiarization with meterscale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)

Introduction to prime movers: Mechanism, gear system, wheel, Fixing of gears withmotor axel. Lever mechanism, Lifting of heavy weight using lever. braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment. (6 Lectures)
Reference Books:
- Performance and design of AC machines – M.G. Say, ELBS Edn.

SEC-II : COMPUTATIONAL PHYSICS
(Credits: 02)
Theory: 30 Lectures

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.
- Highlights the use of computational methods to solve physical problems
- Use of computer language as a tool in solving physics problems (applications)
- Course will consist of hands on training on the Problem solving on Computers.

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Rootsof Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) lissajous figures and (2)trajectory of a projectile thrown at an angle with the horizontal.

(4 Lectures)

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:
1. Exercises on syntax on usage of FORTRAN
2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.
3. To print out all natural even/odd numbers between given limits.
4. To find maximum, minimum and range of a given set of numbers.
5. Calculating Euler number using exp(x) series evaluated at x=1 (6 Lectures)

Scientific word processing: Introduction to \LaTeX\: TeX/\LaTeX\ word processor, preparing a basic \LaTeX\ file, Document classes, Preparing an input file for \LaTeX, Compiling \LaTeX\ File, \LaTeX\ tags for creating different environments, Defining \LaTeX\ commands and environments, Changing the type style, Symbols from other languages. **Equation representation:** Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors. (6 Lectures)

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics
Hands on exercises:
1. To compile a frequency distribution and evaluate mean, standard deviation etc.
2. To evaluate sum of finite series and the area under a curve.
3. To find the product of two matrices
4. To find a set of prime numbers and Fibonacci series.
5. To write program to open a file and generate data for plotting using Gnuplot. Plotting trajectory of a projectile projected horizontally.
6. Plotting trajectory of a projectile projected making an angle with the horizontally.
7. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen.
8. Saving it as an eps file and as a pdf file.
9. To find the roots of a quadratic equation.
10. Motion of a projectile using simulation and plot the output for visualization.
11. Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
12. Motion of particle in a central force field and plot the output for visualization. (9 Lectures)

Reference Books:
- Computer Programming in Fortran 77”. V. Rajaraman (Publisher: PHI).
- Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)
SEC-III: ELECTRICAL CIRCUITS AND NETWORK SKILLS
(Credits: 02)
Theory: 30 Lectures
The aim of this course is to enable the students to design and trouble shoots the electrical circuits, networks and appliances through hands-on mode

Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers. (3 Lectures)

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. (4 Lectures)

Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources. (3 Lectures)

Reference Books:
- A text book in Electrical Technology - B L Theraja - S Chand & Co.
- A text book of Electrical Technology - A K Theraja
- Performance and design of AC machines - M G Say ELBS Edn.

SEC-IV: BASIC INSTRUMENTATION SKILLS
(Credits: 02)
Theory: 30 Lectures
This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. **Multimeter:** Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. **AC millivoltmeter:** Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only— no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation,
synchronization. Front panel controls. Specifications of a CRO and their significance.

(6 Lectures)

Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.

(3 Lectures)

Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators, pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

(4 Lectures)

Impedance Bridges & Q-Meters: Block diagram of bridge. Working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q-Meter. Digital LCR bridges.

(3 Lectures)

(3 Lectures)

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/frequency counter, time-base stability, accuracy and resolution.

(3 Lectures)

The test of lab skills will be of the following test items:

1. Use of an oscilloscope.
2. CRO as a versatile measuring device.
3. Circuit tracing of Laboratory electronic equipment,
4. Use of Digital multimeter/VTVM for measuring voltages
5. Circuit tracing of Laboratory electronic equipment,
7. Study the layout of receiver circuit.
8. Trouble shooting a circuit
9. Balancing of bridges

Laboratory Exercises:

1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
4. Measurement of voltage, frequency, time period and phase angle using CRO.
5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
6. Measurement of rise, fall and delay times using a CRO.

Open Ended Experiments:

1. Using a Dual Trace Oscilloscope
2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:

- Text book in Electrical Technology - B L Theraja - S Chand and Co.
- Performance and design of AC machines - M G Say ELBS Edn.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

SEC-V: RENEWABLE ENERGY AND ENERGY HARVESTING
(Credits: 02)
Theory: 30 Lectures
The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, nonconvective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.
Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric Energy harvesting applications, Human power.

(4 Lectures)

Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications

(2 Lectures)

Carbon captured technologies, cell, batteries, power consumption

(2 Lectures)

Environmental issues and Renewable sources of energy, sustainability.

(1 Lecture)

Demonstrations and Experiments

1. Demonstration of Training modules on Solar energy, wind energy, etc.
2. Conversion of vibration to voltage using piezoelectric materials
3. Conversion of thermal energy into voltage using thermoelectric modules.

Reference Books:

- Non-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi
- Solar energy - M P Agarwal - S Chand and Co. Ltd.
- J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).

SEC-VI : TECHNICAL DRAWING
(Credits: 02)
Theory: 30 Lectures

Introduction: Drafting Instruments and their uses, lettering: construction and uses of various scales: dimensioning as per I.S.I. 696-1972. Engineering Curves: Parabola: hyperbola: ellipse:

Projections: Straight lines, planes and solids. Development of surfaces of right and oblique solids. Section of solids.

Object Projections: Orthographic projection. Interpenetration and intersection of solids. Isometric and oblique parallel projection of solids.

CAD Drawing: Introduction to CAD and Auto CAD, precision drawing and drawing aids, Geometric shapes, Demonstrating CAD- specific skills (graphical user interface. Create, retrieve, edit, and use symbol libraries. Use inquiry commands to extract drawing data). Control entity properties. Demonstrating basic skills to produce 2-D and 3-D drawings. 3D modeling with Auto CAD (surfaces and solids), 3D modeling with sketch up, annotating in Auto CAD with text and hatching, layers, templates & design center, advanced plotting (layouts, viewports), office standards, dimensioning, internet and collaboration, Blocks, Drafting symbols, attributes, extracting data. basic printing, editing tools, Plot/Print drawing to appropriate scale.

Reference Books:
- K. Venugopal, and V. Raja Prabhu. Engineering Graphic, New Age International

SEC-VII : RADIATION SAFETY
(Credits: 02)
Theory: 30 Lectures
The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments listed below the course are to be done in continuation of the topics.
Basics of Atomic and Nuclear Physics: Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron, The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission.
(6 Lectures)

Interaction of Radiation with matter: Types of Radiation: Alpha, Beta, Gamma and Neutron and their sources, sealed and unsealed sources, **Interaction of Photons** - Photo-electric effect, Compton Scattering, Pair Production, Linear and Mass Attenuation Coefficients, **Interaction of Charged Particles:** Heavy charged particles - Beth-Bloch Formula, Scaling laws, Mass Stopping Power, Range, Straggling, Channeling and Cherenkov radiation. Beta Particles-Collision and Radiation loss (Bremsstrahlung),

Interaction of Neutrons- Collision, slowing down and Moderation.
(7 Lectures)

Radiation detection and monitoring devices: Radiation Quantities and Units: Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC).
Radiation detection: Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter), Scintillation Detectors (Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermo luminescent Dosimetry.
(7 Lectures)

(5 Lectures)
Application of nuclear techniques: Application in medical science (e.g., MRI, PET, Projection Imaging Gamma Camera, radiation therapy), Archaeology, Art, Crime detection, Mining and oil.

Industrial Uses: Tracing, Gauging, Material Modification, Sterilization, Food preservation.

(5 Lectures)

Experiments:
1. Study the background radiation levels using Radiation meter

Characteristics of Geiger Muller (GM) Counter:
2) Study of characteristics of GM tube and determination of operating voltage and plateau length using background radiation as source (without commercial source).
3) Study of counting statistics using background radiation using GM counter.
4) Study of radiation in various materials (e.g. KSO4 etc.). Investigation of possible radiation in different routine materials by operating GM at operating voltage.
6) Detection of α particles using reference source & determining its half life using spark counter.
7) Gamma spectrum of Gas Light mantle (Source of Thorium)

Reference Books
2. G.F. Knoll, Radiation detection and measurements
3. Thermoluminescense Dosimetry, Mcknlay, A.F., Bristol, Adam Hilger (Medical Physics Handbook 5)
SEC-VIII: APPLIED OPTICS
(Credits: 02)
THEORY: 30 Lectures

Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

(i) Sources and Detectors (9 Lectures)

Experiments on Lasers:

a. Determination of the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser.

b. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-Ne or solid state laser.

c. To find the polarization angle of laser light using polarizer and analyzer

d. Thermal expansion of quartz using laser

Experiments on Semiconductor Sources and Detectors:

a. V-I characteristics of LED

b. Study the characteristics of solid state laser

c. Study the characteristics of LDR

d. Photovoltaic Cell

e. Characteristics of IR sensor
(ii) Fourier Optics
Concept of Spatial frequency filtering, Fourier transforming property of a thin lens

Experiments on Fourier Optics:

a. Fourier optic and image processing
 1. Optical image addition/subtraction
 2. Optical image differentiation
 3. Fourier optical filtering
 4. Construction of an optical 4f system

b. Fourier Transform Spectroscopy
 Fourier Transform Spectroscopy (FTS) is a powerful method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry and forensic science.

Experiment:
To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

(iii) Holography
Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition

Experiments on Holography and interferometry:
1. Recording and reconstructing holograms
2. Constructing a Michelson interferometer or a Fabry Perot interferometer
3. Measuring the refractive index of air
4. Constructing a Sagnac interferometer
5. Constructing a Mach-Zehnder interferometer
6. White light Hologram
(iv) **Photonics: Fibre Optics**

Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating

Experiments on Photonics: Fibre Optics

a. To measure the numerical aperture of an optical fibre
b. To study the variation of the bending loss in a multimode fibre
c. To determine the mode field diameter (MFD) of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern
d. To measure the near field intensity profile of a fibre and study its refractive index profile
e. To determine the power loss at a splice between two multimode fibre

Reference Books:

SEC-IX: WEATHER FORECASTING

(Credits: 02)

Theory: 30 Lectures

The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques
Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.

(9 Lectures)

Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws.

(4 Lectures)

Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornados; hurricanes.

(3 Lectures)

Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate.

(6 Lectures)

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.

(8 Lectures)

Demonstrations and Experiments:
1. Study of synoptic charts & weather reports, working principle of weather station.
2. Processing and analysis of weather data:
 (a) To calculate the sunniest time of the year.
 (b) To study the variation of rainfall amount and intensity by wind direction.
 (c) To observe the sunniest/driest day of the week.
 (d) To examine the maximum and minimum temperature throughout the year.
 (e) To evaluate the relative humidity of the day.
(f) To examine the rainfall amount month wise.

4. Formats and elements in different types of weather forecasts/ warning (both aviation and non aviation)

Reference books:

6.5.3. Generic Elective Courses (GEC) for Minor Physics Course in the B.Sc.(Hons.) for other mains.

and

Core Courses (CC) and Discipline Specific Elective Courses (DSEC) for B.Sc. (General) Courses with PCM, PMC and PEM combinations

CC-I & GEC-I : MECHANICS

(Credits: Theory-04, Practical-02)

Theory: 60 Lectures

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter.

(4 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients.

(6 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (5 Lectures)

Elasticity: Hooke’s law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson’s Ratio-Expression for Poisson’s ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion – Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and η by Searles method. (8 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate.
Reference Books:
- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young, 13/e, 1986. Addison-Wesley

PHYSICS LAB: CC-I & GEC-I LAB: MECHANICS
60 Lectures
1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
2. To determine the Height of a Building using a Sextant.
3. To determine the Moment of Inertia of a Flywheel.
4. To determine the Young's Modulus of a Wire by Optical Lever Method.
5. To determine the Modulus of Rigidity of a Wire by Maxwell’s needle.
6. To determine the Elastic Constants of a Wire by Searle’s method.
7. To determine g by Bar Pendulum.
8. To determine g by Kater’s Pendulum.
9. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g.

Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Engineering Practical Physics, S.Panigrahi & B.Mallick,2015, Cengage Learning India Pvt. Ltd.
CC-II & GEC-II : ELECTRICITY AND MAGNETISM
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Vector Analysis: Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). *(12 Lectures)*

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. *(22 Lectures)*

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz'slaw, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. *(6 Lectures)*

Maxwell’s equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. *(10 Lectures)*
Reference Books:

- Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- D.J.Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.

CC-II & GEC-II LAB: ELECTRICITY AND MAGNETISM
60 Lectures
(a) To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.

1. Ballistic Galvanometer:
 (i) Measurement of charge and current sensitivity
 (ii) Measurement of CDR
 (iii) Determine a high resistance by Leakage Method
 (iv) To determine Self Inductance of a Coil by Rayleigh’s Method.

2. To compare capacitances using De’Sauty’s bridge.

3. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx)

4. To study the Characteristics of a Series RC Circuit.

5. To study a series LCR circuit and determine its (a) Resonant frequency, (b) Quality factor

(b) To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q

6. To determine a Low Resistance by Carey Foster’s Bridge.

7. To verify the Thevenin and Norton theorems

8. To verify the Superposition, and Maximum Power Transfer Theorems
Reference Books:

- **A Text Book of Practical Physics**, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal

CC-III & GEC-III: THERMAL PHYSICS AND STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

(22 Lectures)

Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell’s relations and applications - Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations.

(10 Lectures)

Kinetic Theory of Gases: Derivation of Maxwell’s law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases.

(10 Lectures)
Theory of Radiation: Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien’s distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien’s displacement law from Planck’s law.

(6 Lectures)

(12 Lectures)

Reference Books:
- Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
- Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears and G.L. Salinger. 1988, Narosa

CC-III & GECIII LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS

60 Lectures

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne’s constant flow method.
3. To determine Stefan’s Constant.
4. To determine the coefficient of thermal conductivity of Cu by Searle’s Apparatus.
5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom’s Method.
6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton’s disc method.
7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system.

Reference Books:
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.

CC-IV & GEC-IV: WAVES AND OPTICS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Superposition of Two Collinear Harmonic oscillations: Linearity & Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats). *(4 Lectures)*

Superposition of Two Perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses. *(2 Lectures)*

Waves Motion- General: Transverse waves on a string. Travelling and standing waves on a string. Normal Modes of a string. Group velocity, Phase velocity. Plane waves. Spherical waves, Wave intensity. *(7 Lectures)*
Fluids: Surface Tension: Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - Variation of surface tension with temperature - Jaeger’s method. Viscosity - Rate flow of liquid in a capillary tube - Poiseuille’s formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of liquid with temperature - lubrication.

(6 Lectures)

Sound: Simple harmonic motion - forced vibrations and resonance - Fourier’s Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine’s formula - measurement of reverberation time - Acoustic aspects of halls and auditoria.

(6 Lectures)

(3 Lectures)

(10 Lectures)

Michelson’s Interferometer: Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index, and Visibility of fringes.

(3 Lectures)

Diffraction: Fraunhofer diffraction- Single slit; Double Slit. Multiple slits and Diffraction grating. Fresnel Diffraction: Half-period zones. Zone plate. Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis.

(14 Lectures)

Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization.

(5 Lectures)
Reference Books:

- Principles of Optics, B.K. Mathur, 1995, Gopal Printing
- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young. 13/e, 1986. Addison-Wesley

CC-IV & GEC-IV LAB: WAVES AND OPTICS

60 Lectures

1. To investigate the motion of coupled oscillators
2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde’s Experiment and to verify $\lambda^2 - T$ Law.
3. To study Lissajous Figures
4. Familiarization with Schuster’s focussing; determination of angle of prism.
5. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille’s method).
6. To determine the Refractive Index of the Material of a Prism using Sodium Light.
7. To determine Dispersive Power of the Material of a Prism using Mercury Light
8. To determine the value of Cauchy Constants.
10. To determine wavelength of sodium light using Fresnel Biprism.
12. To determine the wavelength of Laser light using Diffraction of Single Slit.
13. To determine wavelength of (1) Sodium and (2) Spectral lines of the Mercury light using plane diffraction Gratin
15. To measure the intensity using photosensor and laser in diffraction patterns of single and double slits.
Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.

GEC-V & DSEC-I: DIGITAL, ANALOG CIRCUITS AND INSTRUMENTATION
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

UNIT-1: Digital Circuits:
Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor).
NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. (4 Lectures)

UNIT-2: Semiconductor Devices and Amplifiers:
Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Active, Cutoff & Saturation regions Current gains α and β. Relations between α and β. Load Line analysis of Transistors. DC Load line & Q-point. Voltage Divider Bias Circuit for CE Amplifier. h-parameter Equivalent Circuit. Analysis of single-stage CE amplifier using

UNIT-3: Operational Amplifiers (Black Box approach):

Sinusoidal Oscillators: Barkhausen's Criterion for Self-sustained Oscillations. Determination of Frequency of RC Oscillator (5 Lectures)

UNIT-4: Instrumentations:
Introduction to CRO: Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3 Lectures)
Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation. (6 Lectures)
Timer IC: IC 555 Pin diagram and its application as Astable and Monostable Multivibrator. (3 Lectures)

Reference Books:
- Modern Electronic Instrumentation and Measurement Tech., Helfrick and Cooper, 1990, PHI Learning
GEC-V & DSEC-I LAB: DIGITAL, ANALOG CIRCUITS AND INSTRUMENTS

60 Lectures

1. To measure (a) Voltage, and (b) Frequency of a periodic waveform using CRO
2. To verify and design AND, OR, NOT and XOR gates using NAND gates.
3. To minimize a given logic circuit.
4. Half adder, Full adder and 4-bit Binary Adder.
5. Adder-Subtractor using Full Adder I.C.
6. To design an astable multivibrator of given specifications using 555 Timer.
7. To design a monostable multivibrator of given specifications using 555 Timer.
8. To study IV characteristics of PN diode, Zener and Light emitting diode
9. To study the characteristics of a Transistor in CE configuration.
10. To design a CE amplifier of given gain (mid-gain) using voltage divider bias.
11. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
12. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.
14. To investigate a differentiator made using op-amp.
15. To design a Wien Bridge Oscillator using an op-amp.

Reference Books:

GEC-VI & DSEC-II: ELEMENTS OF MODERN PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Planck’s quantum, Planck’s constant and light as a collection of photons; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment.

(8 Lectures)

Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra.

(4 Lectures)

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle.

(4 Lectures)

Two slit interference experiment with photons, atoms & particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension.

(11 Lectures)

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier.

(12 Lectures)

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy.

(6 Lectures)
Radioactivity: stability of nucleus; Law of radioactive decay; Mean life and half life α decay; β decay - energy released, spectrum and Pauli’s prediction of neutrino; γ-ray emission.

(11 Lectures)

Fission and fusion - mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions.

(4 Lectures)

Reference Books:
- Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill

GEC-VI & DSEC-II LAB: ELEMENTS OF MODERN PHYSICS

60 Lectures
1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
2. To determine work function of material of filament of directly heated vacuum diode.
3. To determine the ionization potential of mercury.
4. To determine value of Planck’s constant using LEDs of at least 4 different colours.
5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
6. To determine the absorption lines in the rotational spectrum of Iodine vapour.
7. To study the diffraction patterns of single and double slits using laser and measure its intensity variation using Photosensor & compare with incoherent source – Na.
8. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
9. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
10. To setup the Millikan oil drop apparatus and determine the charge of an electron.
Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.

GEC-VII & DSEC-III: MATHEMATICAL PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

The emphasis of the course is on applications in solving problems of interest to physicists. Students to be examined on the basis of problems, seen and unseen.

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.
(6 Lectures)

(10 Lectures)

(16 Lectures)
Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (4 Lectures)

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. (10 Lectures)

Reference Books:

- An Introduction to Ordinary Differential Equations, E.A Coddington, 1961, PHI Learning

GEC-VII & DSEC-III LAB: MATHEMATICAL PHYSICS

60 Lectures

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- The course will consist of lectures (both theory and practical) in the Lab
- Evaluation done on the basis of formulating the problem
- **Aim at teaching students to construct the computational problem to be solved**

<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Overview</td>
<td>Computer architecture and organization, memory and Input/output devices</td>
</tr>
<tr>
<td>Basics of scientific computing</td>
<td>Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow- emphasize the importance of making equations in terms of dimensionless variables, Iterative methods</td>
</tr>
<tr>
<td>Errors and error Analysis</td>
<td>Truncation and round off errors, Absolute and relative errors, Floating point computations.</td>
</tr>
<tr>
<td>Programs: using C/C++ language</td>
<td>Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search</td>
</tr>
<tr>
<td>Random number generation</td>
<td>Area of circle, area of square, volume of sphere, value of π</td>
</tr>
<tr>
<td>Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods</td>
<td>Solution of linear and quadratic equation, solving $\alpha = \tan \alpha ; I = I_0 \left(\frac{\sin \alpha}{\alpha} \right)^2$ in optics</td>
</tr>
<tr>
<td>Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation</td>
<td>Evaluation of trigonometric functions e.g. $\sin \theta$, $\cos \theta$, $\tan \theta$, etc.</td>
</tr>
<tr>
<td>Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method</td>
<td>Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop</td>
</tr>
<tr>
<td>Solution of Ordinary</td>
<td>First order differential equation</td>
</tr>
</tbody>
</table>
Differential Equations (ODE)

- First order Differential equation
- Euler, modified Euler and Runge-Kutta (RK) second and fourth order methods
- Radioactive decay
- Current in RC, LC circuits with DC source
- Newton’s law of cooling
- Classical equations of motion

Attempt following problems using RK 4 order method:

- Solve the coupled differential equations
 \[
 \frac{dx}{dt} = y + x - \frac{x^3}{3}; \quad \frac{dy}{dx} = -x
 \]
 for four initial conditions
 \(x(0) = 0, y(0) = -1, -2, -3, -4\).
 Plot \(x\) vs \(y\) for each of the four initial conditions on the same screen for \(0 \leq t \leq 15\)

The differential equation describing the motion of a pendulum is \(\frac{d^2\theta}{dt^2} = -\sin(\theta)\). The pendulum is released from rest at an angular displacement \(\alpha\), i.e. \(\theta(0) = \alpha\) and \(\theta'(0) = 0\). Solve the equation for \(\alpha = 0.1, 0.5\) and \(1.0\) and plot \(\theta\) as a function of time in the range \(0 \leq t \leq 8\pi\). Also plot the analytic solution valid for small \(\theta (\sin(\theta)) = \theta\)

Referred Books:

- An Introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press.

GEC-VIII & DSEC-IV: SOLID STATE PHYSICS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Prerequisites: Knowledge of “Elements of Modern Physics”

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit’s Law, Einstein and Debye theories of specific heat of solids. T^3 law

Reference Books:
- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
• Solid State Physics, Rita John, 2014, McGraw Hill
• Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
• Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
• Solid State Physics, M.A. Wahab, 2011, Narosa Publications

GEC-VIII & DSEC-IV - LAB: SOLID STATE PHYSICS

60 Lectures

1. Measurement of susceptibility of paramagnetic solution (Quinck’s Tube Method)
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
6. To determine the refractive index of a dielectric layer using SPR
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To study the BH curve of iron using a Solenoid and determine the energy loss.
9. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (room temperature to 150 °C) and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.

Reference Books:
• Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.

• A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn., 2011, Kitab Mahal
• Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India

GEC-IX & DSEC-V: QUANTUM MECHANICS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures
Prerequisites: Knowledge of (1) “Mathematical Physics” and (2) “Elements of Modern Physics”

Time independent Schrodinger equation: Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to the spread of Gaussian wavepacket for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle. (10 Lectures)

General discussion of bound states in an arbitrary potential: continuity of wavefunction, boundary condition and emergence of discrete energy levels; application to one-dimensional problem- square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method. (12 Lectures)

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for the second order partial differential equation; angular momentum operator and quantum numbers; Radial wavefunctions from Frobenius method; Orbital angular momentum quantum numbers l and m; s, p, d.. shells (idea only) (10 Lectures)

Atoms in External Magnetic Fields: Normal and Anomalous Zeeman Effect. (4 Lectures)

Reference Books:
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.

Additional Books for Reference
- Introduction to Quantum Mechanics, David J. Griffith, 2nd Ed. 2005, Pearson Education

GEC-IX & DSEC-V LAB: QUANTUM MECHANICS
60 Lectures
Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like
1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:
\[\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E \right] \text{ where } V(r) = -\frac{e^2}{r} \]
Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \(\approx -13.6 \) eV. Take \(e = 3.795 \) (eVÅ)\(^{1/2} \), \(\hbar c = 1973 \) (eVÅ) and \(m = 0.511 \times 10^6 \) eV/c\(^2 \).

2. Solve the s-wave radial Schrödinger equation for an atom:

\[
\frac{d^2 \psi}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} [V(r) - E]
\]

where \(m \) is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential \(V(r) = -\frac{e^2}{r} e^{-r/a} \).

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take \(e = 3.795 \) (eVÅ)\(^{1/2} \), \(m = 0.511 \times 10^6 \) eV/c\(^2 \), and \(a = 3 \) Å, 5 Å, 7 Å. In these units \(\hbar c = 1973 \) (eVÅ). The ground state energy is expected to be above \(-12 \) eV in all three cases.

3. Solve the s-wave radial Schrödinger equation for a particle of mass \(m \):

\[
\frac{d^2 \psi}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} [V(r) - E]
\]

For the anharmonic oscillator potential \(V(r) = \frac{1}{2} kr^2 + \frac{1}{3} br^3 \)

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose \(m = 940 \) MeV/c\(^2 \), \(k = 100 \) MeV fm\(^{-2} \), \(b = 0, 10, 30 \) MeV fm\(^{-3} \) In these units, \(\hbar c = 197.3 \) MeV fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

5. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

\[
\frac{d^2 \psi}{dr^2} = A(r)u(r), A(r) = \frac{2\mu}{\hbar^2} [V(r) - E] \quad \text{Where} \quad \mu \text{ is the reduced mass of the two-atom system}
\]

for the Morse potential \(V(r) = D \left(e^{-2ar'} - e^{-ar'} \right), r' = \frac{r - r_0}{r_0} \)

Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take: \(m = 940 \times 10^6 \) eV/C\(^2 \), \(D = 0.755501 \) eV, \(\alpha = 1.44 \), \(r_0 = 0.131349 \) Å

Some laboratory based experiments:

5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency

6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting

7. To study the quantum tunnelling effect with solid state device, e.g. tunnelling current in backward diode or tunnel diode.

Reference Books:

• Elementary Numerical Analysis, K.E. Atkinson, 3rd Ed. 2007, Wiley India Edition

• Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer

• Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.

• Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.

GEC-X & DSEC-VI: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Embedded system introduction: Introduction to embedded systems and general-purpose computer systems, architecture of embedded system, classifications, applications and purpose of embedded systems, challenges and design issues in embedded systems, operational and non-operational quality attributes of embedded systems, elemental description of embedded processors and microcontrollers. (6 Lectures)

Review of microprocessors: Organization of Microprocessor based system, 8085 μppin diagram and architecture, concept of data bus and address bus, 8085 programming model, instruction classification, subroutines, stacks and its implementation, delay subroutines, hardware and software interrupts. (4 Lectures)
8051 microcontroller: Introduction and block diagram of 8051 microcontroller, architecture of 8051, overview of 8051 family, 8051 assembly language programming, Program Counter and ROM memory map, Data types and directives, Flag bits and Program Status Word (PSW) register, Jump, loop and call instructions. (12 Lectures)

8051 I/O port programming: Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description and their functions, I/O port programming in 8051, (Using Assembly Language), I/O programming: Bit manipulation. (4 Lectures)

Programming of 8051: 8051 addressing modes and accessing memory using various addressing modes, assembly language instructions using each addressing mode, arithmetic & logic instructions, 8051 programming in C:- for time delay and I/O operations and manipulation, for arithmetic & logic operations, for ASCII and BCD conversions. (12 Lectures)

Timer & counter programming: Programming 8051 timers, counter programming. (3 Lectures)

Serial port programming with and without interrupt: Introduction to 8051 interrupts, programming timer interrupts, programming external hardware interrupts and serial communication interrupt, interrupt priority in the 8051. (6 Lectures)

Interfacing 8051 microcontroller to peripherals: Parallel and serial ADC, DAC interfacing, LCD interfacing. (2 Lectures)

Programming Embedded Systems: Structure of embedded program, infinite loop, compiling, linking and locating, downloading and debugging. (3 Lectures)

Embedded system design and development: Embedded system development environment, file types generated after cross compilation, disassembler/ decompiler, simulator, emulator and debugging, embedded product development life-cycle, trends in embedded industry. (8 Lectures)
Reference Books:

- Embedded microcomputer system: Real time interfacing, J.W. Valvano, 2000, Brooks/Cole
- Embedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011, Cengage Learning
PRACTICALS- GEC-X & DSEC-VI LAB: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS

60 Lectures

Following experiments using 8051:

1. To find that the given numbers is prime or not.
2. To find the factorial of a number.
3. Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.
4. Use one of the four ports of 8051 for O/P interfaced to eight LED’s. Simulate binary counter (8 bit) on LED’s.
5. Program to glow the first four LEDs then next four using TIMER application.
6. Program to rotate the contents of the accumulator first right and then left.
7. Program to run a countdown from 9-0 in the seven segment LED display.
8. To interface seven segment LED display with 8051 microcontroller and display ‘HELP’ in the seven segment LED display.
9. To toggle ‘1234’ as ‘1324’ in the seven segment LED display.
10. Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clockwise direction.
11. Application of embedded systems: Temperature measurement, some information on LCD display, interfacing a keyboard.

Reference Books:

GEC-XI & DSEC-VII: Nuclear and Particle Physics
(Credits: Theory-05, Tutorials-01)

Theory: 75 Lectures

Prerequisites: Knowledge of “Elements of Modern Physics”

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excited states.

(10 Lectures)

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force.

(12 Lectures)

Radioactivity decay: (a) Alpha decay: basics of α-decay processes, theory of α-emission, Gamow factor, Geiger Nuttall law, α-decay spectroscopy. (b) β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.

(10 Lectures)

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering).

(8 Lectures)

Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.

(8 Lectures)

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and
construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

(8 Lectures)

Particle Accelerators: Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

(5 Lectures)

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.

(14 Lectures)

Reference Books:
- Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
- Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

DSEC-VIII: Medical Physics
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

PHYSICS OF THE BODY-I
losses of the body, Thermal Regulation. **Pressuresystem of body:** Physics of breathing, Physics of cardiovascular system. (8 Lectures)

PHYSICS OF THE BODY-II

Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. **Optical system of the body:** Physics of the eye. **Electrical system of the body:** Physics of the nervous system, Electrical signals and information transfer. (10 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-I

X-RAYS: Electromagnetic spectrum, production of x-rays, x-ray spectra, Brehmsstrahlung, Characteristic x-ray. **X-ray tubes & types:** Coolidge tube, x-ray tube design, tube cooling stationary mode, Rotating anode x-ray tube, Tube rating, quality and intensity of x-ray. X-ray generator circuits, half wave and full wave rectification, filament circuit, kilo voltage circuit. Single and three phase electric supply. Power ratings. Types of X-Ray Generator, high frequency generator, exposure timers and switches, HT cables. (7 Lectures)

RADIATION PHYSICS: Radiation units exposure, absorbed dose, units: rad, gray, relative biological effectiveness, effective dose- Rem & Sievert, inverse square law. Interaction of radiation with matter Compton & photoelectric effect, linear attenuation coefficient. **Radiation Detectors:** ionization (Thimble chamber, condenser chamber), chamber. Geiger Muller counter, Scintillation counters and Solid State detectors, TFT. (7 Lectures)

MEDICAL IMAGING PHYSICS: Evolution of Medical Imaging, X-ray diagnostics and imaging, Physics of nuclear magnetic resonance (NMR), NMR imaging, MRI Radiological imaging, Ultrasound imaging, Physics of Doppler with applications and modes, Vascular Doppler. Radiography: Filters, grids, cassette, X-ray film, film processing, fluoroscopy. **Computed tomography scanner:** principle and function, display, generations, mammography. Thyroid uptake system and Gamma camera (Only Principle, function and display). (9 Lectures)
RADIATION ONCOLOGY PHYSICS: External Beam Therapy (Basic Idea): Telecobalt, Conformal Radiation Therapy (CRT), 3DCRT, IMRT, Image Guided Radiotherapy, EPID, Rapid Arc, Proton Therapy, Gamma Knife, Cyber Knife. Contact Beam Therapy (Basic Idea): Brachytherapy- LDR and HDR, Intra Operative Brachytherapy. Radiotherapy, kilo voltage machines, deep therapy machines, Telecobalt machines, Medical linear accelerator. Basics of Teletherapy units, deep X-ray, Telecobalt units, Radiation protection, external beam characteristics, dose maximum and build up – bolus, percentage depth dose, tissue maximum ratio and tissue phantom ratio, Planned target Volume and Gross Tumour Volume. (9 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-II
Diagnostic nuclear medicine: Radiopharmaceuticals for radioisotope imaging, Radioisotope imaging equipment, Single photon and positron emission tomography. Therapeutic nuclear medicine: Interaction between radiation and matter Dose and isodose in radiation treatment. Medical Instrumentation: Basic Ideas of Endoscope and Cautery, Sleep Apnea and Cpap Machines, Ventilator and its modes. (5 Lectures)

Reference Books:
- Medical Physics, J.R. Cameron and J.G. Skofronick, Wiley (1978)
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
PHYSICS-DSEC-VIII LAB: Medical Physics

61 Lectures

1. Understanding the working of a manual Hg Blood Pressure monitor and measure the Blood Pressure.
2. Understanding the working of a manual optical eye-testing machine and to learn eye-testing procedure.
3. Correction of Myopia (short sightedness) using a combination of lenses on an optical bench/breadboard.
4. Correction of Hypermetropia/Hyperopia (long sightedness) using a combination of lenses on an optical bench/breadboard.
5. To learn working of Thermoluminescent dosimeter (TLD) badges and measure the background radiation.
6. Familiarization with Geiger-Muller (GM) Counter and to measure background radiation.
7. Familiarization with Radiation meter and to measure background radiation.
8. Familiarization with the Use of a Vascular Doppler.

Reference Books:

- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
• The Physics of Radiology-H E Johns and Cunningham.

7. Teaching Learning Processes

The teaching learning processes play the most important role in achieving the desired aims and objectives of the undergraduate programs in Physics as elaborated in detail in the learning based curriculum framework (LOCF). Physics is basically an experimental science as any ideas and concepts, no matter how simple, complex or far-fetched have to be tested in the laboratory by performing specific experiments designed to test, validate and confirm them before they are accepted as principles of Physics applicable to natural phenomenon. While such ideas and concepts originate in the minds of the genius, anywhere and anytime in the universe, their verifications and confirmations have to be done in the laboratory established in the real world and executed by competent and well trained scientists and engineers. To achieve this goal, the appropriate training of young individuals to become competent scientists and engineers in future have to be accomplished. For this purpose a very good undergraduate program in Physics and other sciences is the first step. We should therefore have an excellent teaching-learning procedural protocol for all the colleges, universities and other higher education institutions (HEI). To be specific, it is desirable to have:

- Necessary and sufficient infrastructural facilities for the class rooms, laboratories and libraries equipped with adequate modern and modular furnitures and other requirements.
- Modern and updated laboratory equipments needed for the undergraduate laboratories and reference and text books for the libraries.
- Sufficient infrastructure for ICT and other facilities needed for technology-enabled learning like computer facilities, PCs, laptops, Wi-Fi and internet facilities with all the necessary softwares.
- Sufficient number of teachers in permanent position to do all the class room teaching and perform and supervise the laboratory experiments to be done by the students.
- All the teachers should be qualified as per the UGC norms and should have good communication skills.
- Sufficient number of technical and other support staff to run the laboratories, libraries, equipment and maintain the infrastructural facilities like buildings, electricity, sanitation,
cleanliness etc.

- Teachers should make use of all the approaches for an efficient teaching-learning process i.e.:

i). Class room teachings with lectures using traditional as well as electronic boards.

ii). Use of Smart class rooms for simulation and demonstration for conveying the difficult concepts of Physics in class room teaching and laboratories.

iii). Tutorials must be an integral part of all the theory and laboratory courses. Theory courses should have 1-2 tutorials every week depending upon the nature of the course.

iv). Teaching should be complimented with students seminar to be organized very frequently.

v). Guest lectures and seminars should be arranged by eminent teachers to be invited by the concerned college/university/HEI.

vi). Open-ended project work should be given to all students individually or in group to 2-3 students depending upon the nature of the course.

 vii). Internship of duration varying from one week anytime in the semester and/or 2-6 weeks during semester break and summer breaks should be arranged by the college/universities/HEI for the students to visit other colleges/universities/HEI and industrial organizations in the vicinity. If needed, financial assistance may also be provided for such arrangements to be made for their internship in the National Laboratories in the region of the institutions.

 viii). Special attempts should be made by the institution to develop problem-solving skills and design of laboratory experiments for demonstration at the UG level. For this purpose a mentor system may be evolved where 3-4 students may be assigned to each faculty member.

 ix). Teaching load should be managed such that the teacher has enough time to interact with the students to encourage an interactive/participative learning.
8. Assessment Methods

In the undergraduate education of Physics leading to the B. Sc with Physics and Physics (Honours) degree, the assessment and evaluation methods focus on testing the conceptual understanding of the basic ideas, development of mathematical skills and experimental techniques retention and ability to apply the knowledge acquired to explain with analysis and reason what has been learnt and to solve new problems and communicate the results and findings effectively. Since the Learning Objectives are defined clearly for each course in detail, it is easier to design methods to monitor the progress in achieving the learning Objectives during the course and test the level of achievement at the end of the course.

- The courses offered in the undergraduate Physics are the first courses at the college/university level, the priority should be given to Formative Assessment for monitoring the progress towards achieving the Learning Objectives while keeping its weightages lower than Summative Assessments. This is to assure that the students know their strengths and weaknesses periodically through the results of Formative Assessments and make amends for the gaps in their knowledge without affecting their final grades in any significant way. In this context it is suggested that 25-30% weightage be given Formative Assessments in case of theory components while 30-40% weightage be given to the Laboratory/Field work/Projects/Case Study/Dissertation components of the various courses. Moreover use of more than one method of Assessment in each course is highly recommended.

- Some of the methods suggested for Theory Component with regard to Formative Assessment are i) Regular Tutorial assignments ii) seminar presentations iii).Performance in group discussions iv) Problem based longer assignments (other than tutorials) v) True/False Tests vi) Multiple Choice Tests vii) Short Answer Tests viii) viva-voce tests ix) Any other innovative tests in the context of the course.

- In the case of substantive Summative Assessment for the theory papers, can be a combination of the following i) Mid -Semester test ii) Seminar Report iii) Individual /Team Project report iv) Oral Presentations of Seminar/Projects v) Viva -Voce Examination on the above reports vi .End Semester closed book examination in the pattern of a) Multiple Choice b) Short Answer c) Long Answer vii) End Semester.
Open Book Examination viii) Peer examination by a group of experts a) Written b) Oral
ix) Any other innovative method depending upon the nature of the course.

- B. Laboratory Experiments / Field work / Projects / Case Study / Dissertation can be assessed for Formative Assessment through i) Regular evaluation of Lab. experiments regarding a) written report of each experiment b) Viva-Voce on each experiment ii) Test through setting experiments by assembling components iii) Mid semester examination iv)Design innovative kits to test the comprehension and analysis of the experiment done by the students

- At the end, the main purpose of Physics teaching should be to impart objective knowledge to students in concrete, comprehensive and effective way. Here, effectiveness implies gaining knowledge and skill which can be applied to solve practical problems as well as attaining capability of logical thinking and imagination which are conducive to new knowledge and new discoveries. Once the student learns, ‘why is it worth learning?’ and ‘how does it connect to the real world?’ The student shall embrace the curriculum in a way which would incite imagination and imbibe a spirit of enquiry in them, so that in future they will opt for further investigations or research. Needless to say, there should be a continuous evaluation system for the students. This will enable the teachers not only to ascertain the overall progress of learning by the students, but also to identify the students who are slow learner and for whom special care should be taken. An appropriate grading system is the ‘relative grading system’ can also be envisaged for certain papers, introducing a competitive element among the students. All in all, the teacher should act as a facilitator and guide and not as a guardian of curriculum.

- HEI can design their own ways and methods to quantify the assessment and evaluation based on the above methods It would then be converted to the letter grades by the procedure described by the template given by the UGC.

- Once the letter grade for a course is obtained for a course, it should be done for all the courses offered by the student. Once the letter grades for all the grades are accumulated then a CGPA should be calculated by quantifying the letter grades as described by the template provided by the UGC.
9. Key Words

Ability Enhancement Compulsory Course (AECC)
Course Learning Outcomes (CLO)
Discipline Specific Electives (DSE)
Formative Assessment (FA)
Generic Elective Courses (GEC)
Learning Outcome based on Curriculum Frame work (LOCF)
Learning Outcomes, Program Learning Outcomes (PLO)
Skill Enhancement Courses (SEC)
Student Centric, Teacher Centric
Teaching Learning Methodology